Advertisement

Frontiers of Physics

, 14:23606 | Cite as

A theoretical study of step edge geometry on sapphire(0001) and its effect on ZnO nucleation

  • Ping Yang
  • Li-Xin ZhangEmail author
Research Article
  • 53 Downloads

Abstract

Step-edge-induced nucleation plays a key role in controlling the growth of novel nanostructures and low-dimensional materials. However, it is difficult to experimentally determine the step edge structures of complex metal oxides. In this work, we present a detailed theoretical study of the stability of stoichiometric steps on sapphire(0001). Based on first-principles calculations and excess charge computation by Finnis’ approach, a pair of non-polar step edges are determined to be the most stable. By studying the adsorption characteristics of ZnO and combining previous works, we successfully explained how growth temperature and deposition rate affect the in-plane orientation of ZnO grown on sapphire(0001). The knowledge on the step edge structures and nucleation patterns would benefit the study on step-edge-guided nanostructure growth.

Keywords

stepped sapphire surface first-principles excess charge step-edge-induced nucleation 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant Nos. 11274179 and 11574157 and the National 973 Projects of China under Grant No. 2012CB921900.

References

  1. 1.
    I. Akasaki, Nobel Lecture: Fascinated journeys into blue light, Rev. Mod. Phys. 87(4), 1119 (2015)ADSCrossRefGoogle Scholar
  2. 2.
    U. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doǧan, V. Avrutin, S. J. Cho, and H. Morkoç, A comprehensive review of ZnO materials and devices, J. Appl. Phys. 98(4), 041301 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    M. Yoshimoto, T. Maeda, T. Ohnishi, H. Koinuma, O. Ishiyama, M. Shinohara, M. Kubo, R. Miura, and A. Miyamoto, Atomic-scale formation of ultrasmooth surfaces on sapphire substrates for high-quality thin-film fabrication, Appl. Phys. Lett. 67(18), 2615 (1995)ADSCrossRefGoogle Scholar
  4. 4.
    C. C. Kim, J. H. Je, P. Ruterana, F. Degave, G. Nouet, M. S. Yi, D. Y. Noh, and Y. Hwu, Microstructures of GaN islands on a stepped sapphire surface, J. Appl. Phys. 91(7), 4233 (2002)ADSCrossRefGoogle Scholar
  5. 5.
    C. Munuera, J. Zúñiga-Pérez, J. F. Rommeluere, V. Sallet, R. Triboulet, F. Soria, V. Muñoz-Sanjosé, and C. Ocal, Morphology of ZnO grown by MOCVD on sapphire substrates, J. Cryst. Growth 264(1–3), 70 (2004)ADSCrossRefGoogle Scholar
  6. 6.
    I. Ohkubo, A. Ohtomo, T. Ohnishi, Y. Mastumoto, H. Koinuma, and M. Kawasaki, In-plane and polar orientations of ZnO thin films grown on atomically flat sapphire, Surf. Sci. 443(1–2), L1043 (1999)Google Scholar
  7. 7.
    D. Dumcenco, D. Ovchinnikov, K. Marinov, P. Lazić, M. Gibertini, N. Marzari, O. L. Sanchez, Y. C. Kung, D. Krasnozhon, M. W. Chen, S. Bertolazzi, P. Gillet, A. Fontcuberta i Morral, A. Radenovic, and A. Kis, Largearea epitaxial monolayer MoS2, ACS Nano 9(4), 4611 (2015)CrossRefGoogle Scholar
  8. 8.
    J. Y. Son, S. J. Lim, J. H. Cho, W. K. Seong, and H. Kim, Synthesis of horizontally aligned ZnO nanowires localized at terrace edges and application for high sensitivity gas sensor, Appl. Phys. Lett. 93(5), 053109 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    K. Fujiwara, A. Ishii, T. Ebisuzaki, T. Abe, and K. Ando, Theoretical investigation on the structural properties of ZnO grown on sapphire, e-J. Surf. Sci. Nanotech. 4, 544 (2006)CrossRefGoogle Scholar
  10. 10.
    C. Yang, Y. R. Li, and J. S. Li, Ab initio total energy study of ZnO adsorption on a sapphire (0001) surface, Phys. Rev. B 70(4), 045413 (2004)ADSCrossRefGoogle Scholar
  11. 11.
    J. Ohta, H. Fujioka, M. Oshima, K. Fujiwara, and A. Ishii, Experimental and theoretical investigation on the structural properties of GaN grown on sapphire, Appl. Phys. Lett. 83(15), 3075 (2003)ADSCrossRefGoogle Scholar
  12. 12.
    L. Chen, B. Liu, M. Ge, Y. Ma, A. N. Abbas, and C. Zhou, Step-edge-guided nucleation and growth of aligned WSe2 on sapphire via a layer-over-layer growth mode, ACS Nano 9(8), 8368 (2015)CrossRefGoogle Scholar
  13. 13.
    A. Ismach, L. Segev, E. Wachtel, and E. Joselevich, Atomic-step-templated formation of single wall carbon nanotube patterns, Angew. Chem. Int. Ed. 43(45), 6140 (2004)CrossRefGoogle Scholar
  14. 14.
    D. Tsivion, M. Schvartzman, R. Popovitz-Biro, P. von Huth, and E. Joselevich, Guided growth of millimeterlong horizontal nanowires with controlled orientations, Science 333(6045), 1003 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    D. Tsivion, M. Schvartzman, R. Popovitz-Biro, and E. Joselevich, Guided growth of horizontal ZnO nanowires with controlled orientations on flat and faceted sapphire surfaces, ACS Nano 6(7), 6433 (2012)CrossRefGoogle Scholar
  16. 16.
    L. Pham Van, O. Kurnosikov, and J. Cousty, Evolution of steps on vicinal (0001) surfaces of a-alumina, Surf. Sci. 411(3), 263 (1998)ADSCrossRefGoogle Scholar
  17. 17.
    O. Kurnosikov, L. Pham Van, and J. Cousty, Hightemperature transformation of vicinal (0001) Al2O3- surfaces: An AFM study, Surf. Interface Anal. 29(9), 608 (2000)CrossRefGoogle Scholar
  18. 18.
    F. Cuccureddu, S. Murphy, I. V. Shvets, M. Porcu, H. W. Zandbergen, N. S. Sidorov, and S. I. Bozhko, Surface morphology of c-plane sapphire (a-alumina) produced by high temperature anneal, Surf. Sci. 604(15–16), 1294 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    Y. Shiratsuchi, M. Yamamoto, and Y. Kamada, Surface structure of self-organized sapphire(0001) substrates with various inclined angles, Jpn. J. Appl. Phys. 41(Part 1, No. 9), 5719 (2002)Google Scholar
  20. 20.
    B. Qi, B. Agnarsson, S. Ólafsson, H. P. Gíslason, and M. Göthelid, Room temperature deposition of self-assembled Al nanoclusters on stepped sapphire(0001) surface and subsequent nitridation, Thin Solid Films 520(1), 64 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    G. Kresse and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6(1), 15 (1996)CrossRefGoogle Scholar
  22. 22.
    P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50(24), 17953 (1994)ADSCrossRefGoogle Scholar
  23. 23.
    J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)ADSCrossRefGoogle Scholar
  24. 24.
    S. D. Mo and W. Y. Ching, Electronic and optical properties of -Al2O3 and comparison to -Al2O3, Phys. Rev. B 57(24), 15219 (1998)ADSCrossRefGoogle Scholar
  25. 25.
    J. Ahn and J. W. Rabalais, Composition and structure of the Al2O3{0001}-(1 1) surface, Surf. Sci. 388(1–3), 121 (1997)ADSCrossRefGoogle Scholar
  26. 26.
    T. Kurita, K. Uchida, and A. Oshiyama, Atomic and electronic structures of -Al2O3 surfaces, Phys. Rev. B 82(15), 155319 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    J. Stausholm-Møller, H. H. Kristoffersen, U. Martinez, and B. Hammer, A density functional theory study of atomic steps on stoichiometric rutile TiO2 (110), J. Chem. Phys. 139(23), 234704 (2013)ADSCrossRefGoogle Scholar
  28. 28.
    B. Lee and D. R. Trinkle, Energetics of rutile TiO2 vicinal surfaces with 001 steps from the energy density method, J. Phys. Chem. C 119(32), 18203 (2015)CrossRefGoogle Scholar
  29. 29.
    S. M. Kozlov, F. Viñes, N. Nilius, S. Shaikhutdinov, and K. M. Neyman, Absolute surface step energies: Accurate theoretical methods applied to ceria nanoislands, J. Phys. Chem. Lett. 3(15), 1956 (2012)CrossRefGoogle Scholar
  30. 30.
    P. W. Tasker, The stability of ionic crystal surfaces, J. Phys. C Solid State Phys. 12(22), 4977 (1979)ADSCrossRefGoogle Scholar
  31. 31.
    S. Köstlmeier, C. Elsässer, B. Meyer, and M. W. Finnis, A density functional study of interactions at the metal–ceramic interfaces Al/MgAl2O4 and Ag/MgAl2O4, Phys. Status Solidi (a) 166(1), 417(1998)Google Scholar
  32. 32.
    V. E. Henrich and S. K. Shaikhutdinov, Atomic geometry of steps on metal-oxide single crystals, Surf. Sci. 574(2–3), 306 (2005)ADSCrossRefGoogle Scholar
  33. 33.
    H. Q. Wang, E. I. Altman, and V. E. Henrich, Steps on Fe3O4(100): STM measurements and theoretical calculations, Phys. Rev. B 73(23), 235418 (2006)ADSCrossRefGoogle Scholar
  34. 34.
    R. D. Vispute, V. Talyansky, Z. Trajanovic, S. Choopun, M. Downes, R. P. Sharma, T. Venkatesan, M. C. Woods, R. T. Lareau, K. A. Jones, and A. A. Iliadis, High quality crystalline ZnO buffer layers on sapphire(001) by pulsed laser deposition for III–V nitrides, Appl. Phys. Lett. 70(20), 2735 (1997)ADSCrossRefGoogle Scholar
  35. 35.
    Y. Chen, D. M. Bagnall, H. J. Koh, K. T. Park, K. Hiraga, Z. Zhu, and T. Yao, Plasma assisted molecular beam epitaxy of ZnO on c-plane sapphire: Growth and characterization, J. Appl. Phys. 84(7), 3912 (1998)ADSCrossRefGoogle Scholar
  36. 36.
    J. Coraux, A. T N’Diaye, M. Engler, C. Busse, D. Wall, N. Buckanie, F.-J. M. zu Heringdorf, R. van Gastel, B. Poelsema, and T. Michely, Growth of graphene on Ir(111), New J. Phys. 11(2), 023006 (2009)ADSCrossRefGoogle Scholar
  37. 37.
    T. Shiota, H. Ito, N. Wakiya, J. Cross, O. Sakurai, and K. Shinozaki, Effect of step edges on the growth of Pt thin films on oxide single-crystal substrates, J. Ceram. Soc. Jpn. 121(1411), 278 (2013)CrossRefGoogle Scholar
  38. 38.
    B. J. Murray, E. C. Walter, and R. M. Penner, Amine vapor sensing with silver mesowires, Nano Lett. 4(4), 665 (2004)ADSCrossRefGoogle Scholar
  39. 39.
    D. Dumcenco, D. Ovchinnikov, K. Marinov, P. Lazić, M. Gibertini, N. Marzari, O. L. Sanchez, Y. C. Kung, D. Krasnozhon, M. W. Chen, S. Bertolazzi, P. Gillet, A. Fontcuberta i Morral, A. Radenovic, and A. Kis, Largearea epitaxial monolayer MoS2, ACS Nano 9(4), 4611 (2015)CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of PhysicsNankai UniversityTianjinChina

Personalised recommendations