Advertisement

Frontiers of Physics

, 14:23502 | Cite as

Physical properties of quaternary compounds Gd2CoAl4T2 (T = Si, Ge) single crystals

  • Kaijian Huang
  • Yuanshuai Sun
  • Shanshan Sun
  • Xiao Zhang
  • Hechang Lei
Letter
  • 19 Downloads

Abstract

We have synthesized and investigated physical properties of two new quaternary compounds Gd2CoAl4T2 (T = Si, Ge) single crystals, which are isostructural to Tb2NiAl4Ge2 and Er2CoAl4Ge2. The most important structural feature of these materials is the anti-CaF2-type CoAl4T2 slabs. These materials show metallic behavior below 300 K and there is a long-range antiferromagnetic (AFM) transition appearing at 20 and 27 K for Gd2CoAl4Ge2 and Gd2CoAl4Si2, respectively. Resistivity and heat capacity measurements also confirm these bulk AFM transitions. Further analysis indicates that this long-range antiferromagnetism should result from the magnetic interaction between local moments of Gd3+ ions.

Keywords

magnetic materials rare earth compounds single crystal growth 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11574394, 11774423, 11822412, and 51608273), the Fundamental Research Funds for the Central Universities (Grant No. 2017RC20), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (No. 16KJB560008), the Young Researcher Program Nanjing Forestry University of China (No. CX2016023), Key Laboratory of Advanced Building Materials of Anhui Province of China (No. JZCL201603KF), and State Key Laboratory of High Performance Civil Engineering Materials of China (No. 2016CEM004).

References

  1. 1.
    P. C. Canfield and Z. Fisk, Growth of single crystals from metallic fluxes, Philos. Mag. B 65, 1117 (1992)ADSCrossRefGoogle Scholar
  2. 2.
    M. G. Kanatzidis, R. Pöttgen, and W. Jeitschko, The metal flux: A preparative tool for the exploration of intermetallic compounds, Angew. Chem. Int. Ed. 44(43), 6996 (2005)CrossRefGoogle Scholar
  3. 3.
    S. Okada, Y. Yu, T. Lundström, K. Kudou, and T. Tanaka, Crystal growth and some properties of LuB4, LuAlB4, and Lu2AlB6, Jpn. J. Appl. Phys. 35(Part 1, No. 9A), 4718 (1996)Google Scholar
  4. 4.
    S. Okada, K. Kudou, K. Iizumi, K. Kudaka, I. Higashi, and T. Lundström, Single-crystal growth and properties of CrB, Cr3B4, Cr2B3 and CrB2 from high-temperature aluminum solutions, J. Cryst. Growth 166(1–4), 429 (1996)ADSCrossRefGoogle Scholar
  5. 5.
    B. Sieve, X. Z. Chen, J. A. Cowen, P. Larson, S. D. Mahanti, and M. G. Kanatzidis, Multinary intermetallics from molten Al. Synthesis of SmNiAl4Ge2 and YNiAl4Ge2. Possible spin frustration in separated triangular Sm3+ layers, Chem. Mater. 11(9), 2451 (1999)CrossRefGoogle Scholar
  6. 6.
    X. Z. Chen, S. Sportouch, B. Sieve, P. Brazis, C. R. Kannewurf, J. A. Cowen, R. Patschke, and M. G. Kanatzidis, Exploratory synthesis with molten aluminum as a solvent and routes to multinary aluminum silicides. Sm2Ni(NixSi1-x)Al4Si6 (x = 0:18-0:27): A new silicide with a ferromagnetic transition at 17.5 K, Chem. Mater. 10(10), 3202 (1998)CrossRefGoogle Scholar
  7. 7.
    B. Sieve, X. Z. Chen, R. Henning, P. Brazis, C. R. Kannewurf, J. A. Schultz, and M. G. Kanatzidis, Cubic aluminum silicides RE8Ru12Al49Si9 (AlxSi12-x) (RE = Pr, Sm) from liquid aluminum. Empty (Si,Al)12 cuboctahedral clusters and assignment of the Al/Si distribution with neutron diffraction, J. Am. Chem. Soc. 123(29), 7040 (2001)CrossRefGoogle Scholar
  8. 8.
    B. Sieve, P. N. Trikalitis, and M. G. Kanatzidis, Quaternary germanides formed in molten aluminum: Tb2NiAl4Ge2 and Ce2NiAl6-xGe4-y (x 0:24, y 1:34), Z. Anorg. Allg. Chem. 628(7), 1568 (2002)CrossRefGoogle Scholar
  9. 9.
    G. Demchenko, J. Kónczyk, P. Demchenko, R. Gladyshevskii, W. Majzner, and L. Muratova, Quaternary alumogermanides in the Er-Co,Ni-Al-Ge systems, Chem. Met. Alloys 1, 254 (2008)Google Scholar
  10. 10.
    M. E. Fisher, Relation between the specific heat and susceptibility of an antiferromagnet, Philos. Mag. 7(82), 1731 (1962)ADSCrossRefGoogle Scholar
  11. 11.
    F. Canepa, M. Napoletano, M. L. Fornasini, and F. Merlo, Structure and magnetism of Gd2Co2Ga, Gd2Co2Al and Gd14Co3In2:7, J. Alloys Compd. 345(1–2), 42 (2002)Google Scholar
  12. 12.
    F. B. Anderson and H. B. Callen, Statistical mechanics and field-induced phase transitions of the Heisenberg antiferromagnet, Phys. Rev. 136(4A), A1068 (1964)Google Scholar
  13. 13.
    Y. Shapira and S. Foner, Magnetic phase diagram of MnF2 from ultrasonic and differential magnetization measurements, Phys. Rev. B 1(7), 3083 (1970)ADSCrossRefGoogle Scholar
  14. 14.
    F. Keffer and H. Chow, Dynamics of the antiferromagnetic spin-flop transition, Phys. Rev. Lett. 31(17), 1061 (1973)ADSCrossRefGoogle Scholar
  15. 15.
    S. N. de Medeiros, M. A. Continentino, M. T. D. Orlando, M. B. Fontes, E. M. Baggio-Saitovitch, A. Rosch, and A. Eichler, Quantum critical point in CeCo(Ge1-xSix)3, Physica B 281–282, 340 (2000)Google Scholar
  16. 16.
    M. B. Fontes, J. C. Trochez, B. Giordanengo, S. L. Budko, D. R. Sanchez, E. M. Baggio-Saitovitch, and M. A. Continentino, Electron-magnon interaction in RNiBC (R = Er, Ho, Dy, Tb, and Gd) series of compounds based on magnetoresistance measurements, Phys. Rev. B 60(9), 6781 (1999)ADSCrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Civil EngineeringNanjing Forestry UniversityNanjingChina
  2. 2.Department of Physics and Beijing Key Laboratory of Opto-electronic Functional Materials & Micro-nano DevicesRenmin University of ChinaBeijingChina
  3. 3.State Key Laboratory of Information Photonics and Optical Communications & School of ScienceBeijing University of Posts and TelecommunicationsBeijingChina

Personalised recommendations