Frontiers of Physics

, 14:23602 | Cite as

Finite temperature physics of 1D topological Kondo insulator: Stable Haldane phase, emergent energy scale and beyond

  • Yin ZhongEmail author
  • Qin Wang
  • Yu LiuEmail author
  • Hai-Feng Song
  • Ke Liu
  • Hong-Gang LuoEmail author
Research Article


In recent years, interacting topological insulators have emerged as new frontiers in condensed matter physics, and the hotly studied topological Kondo insulator (TKI) is one of such prototypes. Although its zero-temperature ground-state has been widely investigated, the finite temperature physics on TKI is largely unknown. Here, we explore the finite temperature properties in a simplified model for TKI, namely the one-dimensional p-wave periodic Anderson model, with numerically exact determinant quantum Monte Carlo simulation. It is found that the topological Haldane phase established for groundstate is still stable against small thermal fluctuation and its characteristic edge magnetization develops at low temperature. Such facts emphasize the robustness of (symmetry-protected) topological order against temperature effect, which always exists at real physical world. Moreover, we use the saturated low-T spin structure factor and the 1/T - law of susceptibility to detect the free edge spin moment, interestingly the low-temperature upturn behavior of the latter one is similar to experimental finding in SmB6 at T < 50 K. It implies that similar physical mechanism may work both for idealized models and realistic correlated electron materials. We have also identified an emergent energy scale Tcr, which signals a crossover into interesting low-T regime and seems to be the expected Ruderman–Kittel–Kasuya–Yosida coupling. Finally, the collective Kondo screening effect has been examined and it is heavily reduced at boundary, which may give a fruitful playground for novel physics beyond the wellestablished Haldane phase and topological band insulators.


topological Kondo insulator heavy fermion quantum Monte Carlo Haldane phase 



This research was supported in part by the National Natural Science Foundation of China under Grant Nos. 11325417, 11674139, and 11704166, the Fundamental Research Funds for the Central Universities, Science Challenge Project under Grant No. JCKY2016212A502, SPC-Lab Research Fund (NO. XKFZ201605) and the Foundation of LCP.


  1. 1.
    M. Z. Hasan and C. L. Kane, Topological insulators, Rev. Mod. Phys. 82(4), 3045 (2010)ADSCrossRefGoogle Scholar
  2. 2.
    X. L. Qi and S. C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys. 83(4), 1057 (2011)ADSCrossRefGoogle Scholar
  3. 3.
    M. Hohenadler and F. F. Assaad, Correlation effects in two-dimensional topological insulators, J. Phys. Condens. Matter 25(14), 143201 (2013)ADSCrossRefGoogle Scholar
  4. 4.
    A. Bansil, H. Lin, and T. Das, Topological band theory, Rev. Mod. Phys. 88(2), 021004 (2016)ADSCrossRefGoogle Scholar
  5. 5.
    E. Witten, Fermion path integrals and topological phases, Rev. Mod. Phys. 88(3), 035001 (2016)ADSCrossRefGoogle Scholar
  6. 6.
    C. K. Chiu, J. C. Y. Teo, A. P. Schnyder, and S. Ryu, Classification of topological quantum matter with symmetries, Rev. Mod. Phys. 88(3), 035005 (2016)ADSCrossRefGoogle Scholar
  7. 7.
    T. Senthil, Symmetry-protected topological phases of quantum matter, Annu. Rev. Condens. Matter Phys. 6(1), 299 (2015)ADSCrossRefGoogle Scholar
  8. 8.
    C. X. Liu, S. C. Zhang, and X. L. Qi, The quantum anomalous Hall effect: Theory and experiment, Annu. Rev. Condens. Matter Phys. 7(1), 301 (2016)Google Scholar
  9. 9.
    M. Dzero, J. Xia, V. Galitski, and P. Coleman, Topological Kondo insulators, Annu. Rev. Condens. Matter Phys. 7(1), 249 (2016)ADSCrossRefGoogle Scholar
  10. 10.
    M. Dzero, K. Sun, V. Galitski, and P. Coleman, Topological Kondo insulators, Phys. Rev. Lett. 104(10), 106408 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    J. Jiang, S. Li, T. Zhang, Z. Sun, F. Chen, Z. R. Ye, M. Xu, Q. Q. Ge, S. Y. Tan, X. H. Niu, M. Xia, B. P. Xie, Y. F. Li, X. H. Chen, H. H. Wen, and D. L. Feng, Observation of possible topological in-gap surface states in the Kondo insulator SmB6 by photoemission, Nat. Commun. 4(1), 3010 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    M. Neupane, N. Alidoust, S. Y. Xu, T. Kondo, Y. Ishida, D. J. Kim, C. Liu, I. Belopolski, Y. J. Jo, T. R. Chang, H. T. Jeng, T. Durakiewicz, L. Balicas, H. Lin, A. Bansil, S. Shin, Z. Fisk, and M. Z. Hasan, Surface electronic structure of the topological Kondo-insulator candidate correlated electron system SmB6, Nat. Commun. 4(1), 2991 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    V. Alexandrov, P. Coleman, and O. Erten, Kondo Breakdown in Topological Kondo Insulators, Phys. Rev. Lett. 114(17), 177202 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    B. S. Tan, Y. T. Hsu, B. Zeng, M. C. Hatnean, N. Harrison, Z. Zhu, M. Hartstein, M. Kiourlappou, A. Srivastava, M. D. Johannes, T. P. Murphy, J. H. Park, L. Balicas, G. G. Lonzarich, G. Balakrishnan, and S. E. Sebastian, Unconventional Fermi surface in an insulating state, Science 349(6245), 287 (2015)ADSCrossRefGoogle Scholar
  15. 15.
    G. Baskaran, Majorana Fermi sea in insulating SmB6: A proposal and a theory of quantum oscillations in Kondo insulators, arXiv: 1507.03477Google Scholar
  16. 16.
    O. Erten, P. Y. Chang, P. Coleman, and A. M. Tsvelik, Skyrme Insulators: Insulators at the Brink of Superconductivity, Phys. Rev. Lett. 119(5), 057603 (2017)ADSCrossRefGoogle Scholar
  17. 17.
    A. Thomson and S. Sachdev, Fractionalized Fermi liquid on the surface of a topological Kondo insulator, Phys. Rev. B 93(12), 125103 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    O. Erten, P. Ghaemi, and P. Coleman, Kondo breakdown and quantum oscillations in SmB6, Phys. Rev. Lett. 116(4), 046403 (2016)ADSCrossRefGoogle Scholar
  19. 19.
    D. Chowdhury, I. Sodemann, and T. Senthil, Mixedvalence insulators with neutral Fermi surfaces, Nat. Commun. 9(1), 1766 (2018)ADSCrossRefGoogle Scholar
  20. 20.
    I. Sodemann, D. Chowdhury, and T. Senthil, Quantum oscillations in insulators with neutral Fermi surfaces, Phys. Rev. B 97(4), 045152 (2018)ADSCrossRefGoogle Scholar
  21. 21.
    Y. Zhong, Y. Liu, and H.-G. Luo, Topological phase in 1D topological Kondo insulator: Z2 topological insulator, Haldane-like phase and Kondo breakdown, Eur. Phys. J. B 90, 147 (2017)ADSCrossRefGoogle Scholar
  22. 22.
    F. T. Lisandrini, A. M. Lobos, A. O. Dobry, and C. J. Gazza, Topological Kondo insulators in one dimension: Continuous Haldane-type ground-state evolution from the strongly interacting to the noninteracting limit, Phys. Rev. B 96(7), 075124 (2017)ADSCrossRefGoogle Scholar
  23. 23.
    X. G. Wen, Zoo of quantum-topological phases of matter, Rev. Mod. Phys. 89(4), 041004 (2017)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    Y. F. Yang, Two-fluid model for heavy electron physics, Rep. Prog. Phys. 79(7), 074501 (2016)ADSCrossRefGoogle Scholar
  25. 25.
    R. Blankenbecler, D. J. Scalapino, and R. L. Sugar, Monte Carlo calculations of coupled boson-fermion systems (I), Phys. Rev. D 24(8), 2278 (1981)ADSCrossRefGoogle Scholar
  26. 26.
    J. E. Hirsch, Two-dimensional Hubbard model: Numerical simulation study, Phys. Rev. B 31(7), 4403 (1985)ADSCrossRefGoogle Scholar
  27. 27.
    R. R. dos Santo, Introduction to quantum Monte Carlo simulations for fermionic systems, Braz. J. Phys. 33, 1 (2003)Google Scholar
  28. 28.
    M. Vekic, J. W. Cannon, D. J. Scalapino, R. T. Scalettar, and R. L. Sugar, Competition between Antiferromagnetic Order and Spin-Liquid Behavior in the Two-Dimensional Periodic Anderson Model at Half Filling, Phys. Rev. Lett. 74(12), 2367 (1995)ADSCrossRefGoogle Scholar
  29. 29.
    M. Jiang, N. J. Curro, and R. T. Scalettar, Universal Knight shift anomaly in the periodic Anderson model, Phys. Rev. B 90(24), 241109(R) (2014)ADSCrossRefGoogle Scholar
  30. 30.
    H. F. Lin, H. S. Tao, W. X. Guo, and W. M. Liu, Antiferromagnetism and Kondo screening on a honeycomb lattice, Chin. Phys. B 24(5), 057101 (2015)ADSCrossRefGoogle Scholar
  31. 31.
    W. Hu, R. T. Scalettar, E. W. Huang, and B. Moritz, Effects of an additional conduction band on the singletantiferromagnet competition in the periodic Anderson model, Phys. Rev. B 95(23), 235122 (2017)ADSCrossRefGoogle Scholar
  32. 32.
    J. Gubernatis, N. Kawashima, and P. Werner, Quantum Monte Carlo Methods: Algorithms for Lattice Models, Cambridge University Press, 2016zbMATHCrossRefGoogle Scholar
  33. 33.
    T. Paiva, G. Esirgen, R. T. Scalettar, C. Huscroft, and A. K. McMahan, Doping-dependent study of the periodic Anderson model in three dimensions, Phys. Rev. B 68(19), 195111 (2003)ADSCrossRefGoogle Scholar
  34. 34.
    H. L. Nourse, I. P. McCulloch, C. Janani, and B. J. Powell, Haldane insulator protected by reflection symmetry in the doped Hubbard model on the three-legged ladder, Phys. Rev. B 94(21), 214418 (2016)ADSCrossRefGoogle Scholar
  35. 35.
    A. M. Lobos, A. O. Dobry, and V. Galitski, Magnetic end states in a strongly interacting one-dimensional topological Kondo Insulator, Phys. Rev. X 5(2), 021017 (2015)Google Scholar
  36. 36.
    A. Mezio, A. M. Lobos, A. O. Dobry, and C. J. Gazza, Haldane phase in one-dimensional topological Kondo insulators, Phys. Rev. B 92(20), 205128 (2015)ADSCrossRefGoogle Scholar
  37. 37.
    I. Hagymási and O. Legeza, Characterization of a correlated topological Kondo insulator in one dimension, Phys. Rev. B 93(16), 165104 (2016)ADSCrossRefGoogle Scholar
  38. 38.
    J. C. Nickerson, R. M. White, K. N. Lee, R. Bachmann, R. Geballe, and G. W. Hull, Physical properties of SmB6, Phys. Rev. B 3(6), 2030 (1971)ADSCrossRefGoogle Scholar
  39. 39.
    P. Coleman, Introduction to Many Body Physics, Chapters 15 to 18, Cambridge University Press, 2015zbMATHCrossRefGoogle Scholar
  40. 40.
    K. Kummer, S. Patil, A. Chikina, M. Güttler, M. Höppner, et al., Temperature-independent Fermi surface in the Kondo lattice YbRh2Si2, Phys. Rev. X 5(1), 011028 (2015)Google Scholar
  41. 41.
    Q. Y. Chen, D. F. Xu, X. H. Niu, J. Jiang, R. Peng, et al., Direct observation of how the heavy-fermion state develops in CeCoIn5, Phys. Rev. B 96(4), 045107 (2017)ADSCrossRefGoogle Scholar
  42. 42.
    E. Abrahams, J. Schmalian, and P. Wölfle, Strongcoupling theory of heavy-fermion criticality, Phys. Rev. B 90(4), 045105 (2014)ADSCrossRefGoogle Scholar
  43. 43.
    V. R. Shaginyan, A. Z. Msezane, G. S. Japaridze, K. G. Popov, and V. A. Khodel, Strongly correlated Fermi systems as a new state of matter, Front. Phys. 11(5), 117103 (2016)CrossRefGoogle Scholar
  44. 44.
    Q. Si, S. Rabello, K. Ingersent, and J. L. Smith, Locally critical quantum phase transitions in strongly correlated metals, Nature 413(6858), 804 (2001)ADSCrossRefGoogle Scholar
  45. 45.
    T. Senthil, M. Vojta, and S. Sachdev, Weak magnetism and non-Fermi liquids near heavy-fermion critical points, Phys. Rev. B 69(3), 035111 (2004)ADSCrossRefGoogle Scholar
  46. 46.
    I. Paul, C. Pépin, and M. R. Norman, Kondo Breakdown and Hybridization Fluctuations in the Kondo-Heisenberg Lattice, Phys. Rev. Lett. 98(2), 026402 (2007)ADSCrossRefGoogle Scholar
  47. 47.
    Y. Zhong, K. Liu, Y. Q. Wang, and H. G. Luo, Alternative Kondo breakdown mechanism: Orbital-selective orthogonal metal transition, Phys. Rev. B Condens. Matter Mater. Phys. 86(11), 115113 (2012)ADSCrossRefGoogle Scholar
  48. 48.
    M. Hartstein, W. H. Toews, Y. T. Hsu, B. Zeng, X. Chen, et al., Fermi surface in the absence of a Fermi liquid in the Kondo insulator SmB6, Nat. Phys. 14(2), 166 (2017)CrossRefGoogle Scholar
  49. 49.
    Y. Zhong, Y. Liu, and H. G. Luo, Simulating heavy fermion physics in optical lattice: Periodic Anderson model with harmonic trapping potential, Front. Phys. 12(5), 127502 (2017)CrossRefGoogle Scholar
  50. 50.
    R. C. Caro, R. Franco, and J. Silva-Valencia, Spin-liquid state in an inhomogeneous periodic Anderson model, Phys. Rev. A 97(2), 023630 (2018)ADSCrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Center for Interdisciplinary Studies & Key Laboratory for Magnetism and Magnetic Materials of the MoELanzhou UniversityLanzhouChina
  2. 2.Institute of Applied Physics and Computational MathematicsBeijingChina
  3. 3.Software Center for High Performance Numerical SimulationChina Academy of Engineering PhysicsBeijingChina
  4. 4.Arnold Sommerfeld Center for Theoretical PhysicsUniversity of MunichMunichGermany
  5. 5.Beijing Computational Science Research CenterBeijingChina

Personalised recommendations