Advertisement

Frontiers of Physics

, 14:13608 | Cite as

Stacking transition in rhombohedral graphite

  • Tataiana Latychevskaia
  • Seok-Kyun Son
  • Yaping Yang
  • Dale Chancellor
  • Michael Brown
  • Servet Ozdemir
  • Ivan Madan
  • Gabriele Berruto
  • Fabrizio Carbone
  • Artem Mishchenko
  • Kostya S. NovoselovEmail author
Research Article
Part of the following topical collections:
  1. Graphene and other Two-Dimensional Materials

Abstract

Few-layer graphene (FLG) has recently been intensively investigated for its variable electronic properties, which are defined by a local atomic arrangement. While the most natural arrangement of layers in FLG is ABA (Bernal) stacking, a metastable ABC (rhombohedral) stacking, characterized by a relatively high-energy barrier, can also occur. When both types of stacking occur in one FLG device, the arrangement results in an in-plane heterostructure with a domain wall (DW). In this paper, we present two approaches to demonstrate that the ABC stacking in FLG can be controllably and locally turned into the ABA stacking. In the first approach, we introduced Joule heating, and the transition was characterized by 2D peak Raman spectra at a submicron spatial resolution. The transition was initiated in a small region, and then the DW was controllably shifted until the entire device became ABA stacked. In the second approach, the transition was achieved by illuminating the ABC region with a train of 790-nm-wavelength laser pulses, and the transition was visualized by transmission electron microscopy in both diffraction and dark-field imaging modes. Further, using this approach, the DW was visualized at a nanoscale spatial resolution in the dark-field imaging mode.

Keywords

graphene graphite van der Waals heterostructures domain wall Raman spectroscopy transmission electron microscopy electron diffraction structural transition 

Notes

Acknowledgements

The LUMES laboratory acknowledges support from the NCCR MUST. G. B. acknowledges financial support from the Swiss National Science Foundation (SNSF) through the Grant No. 200021 159219/1. S. K. S. and A. M. acknowledge the support of EPSRC Early Career Fellowship EP/N007131/1. Y. Y. acknowledges the support of China Scholarship Council. We would like to acknowledge Giovanni M. Vanacore for insightful discussions.

Supplementary material

11467_2018_867_MOESM1_ESM.pdf (908 kb)
Stacking transition in rhombohedral graphite

References

  1. 1.
    J. D. Bernal, The structure of graphite, Proc. R. Soc. Lond. Ser. A 106, 749 (1924)ADSCrossRefGoogle Scholar
  2. 2.
    F. Laves and Y. Baskin, On the formation of the rhombohedral graphite modification, Z. Kristallogr. Cryst. Mater. 107(5–6), 337 (1956)CrossRefGoogle Scholar
  3. 3.
    H. A. Wilhelm, B. Croset, and G. Medjahdi, Proportion and dispersion of rhombohedral sequences in the hexagonal structure of graphite powders, Carbon 45(12), 2356 (2007)CrossRefGoogle Scholar
  4. 4.
    C. H. Lui, Z. Q. Li, Z. Y. Chen, P. V. Klimov, L. E. Brus, and T. F. Heinz, Imaging stacking order in fewlayer graphene, Nano Lett. 11(1), 164 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    A. Torche, F. Mauri, J. C. Charlier, and M. Calandra, First-principles determination of the Raman fingerprint of rhombohedral graphite, Phys. Rev. Mater. 1(4), 041001 (2017)CrossRefGoogle Scholar
  6. 6.
    M. Koshino, Interlayer screening effect in graphene multilayers with ABA and ABC stacking, Phys. Rev. B 81(12), 125304 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    R. J. Xiao, F. Tasnadi, K. Koepernik, J. W. F. Venderbos, M. Richter, and M. Taut, Density functional investigation of rhombohedral stacks of graphene: Topological surface states, nonlinear dielectric response, and bulk limit, Phys. Rev. B 84(16), 165404 (2011)Google Scholar
  8. 8.
    K. Sugawara, N. Yamamura, K. Matsuda, W. Norimatsu, M. Kusunoki, T. Sato, and T. Takahashi, Selective fabrication of free-standing ABA and ABC trilayer graphene with/without Dirac-cone energy bands, NPG Asia Mater. 10(2), e466 (2018)CrossRefGoogle Scholar
  9. 9.
    M. F. Craciun, S. Russo, M. Yamamoto, J. B. Oostinga, A. F. Morpurgo, and S. Tarucha, Trilayer graphene is a semimetal with a gate-tunable band overlap, Nat. Nanotechnol. 4(6), 383 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    M. Aoki and H. Amawashi, Dependence of band structures on stacking and field in layered graphene, Solid State Commun. 142(3), 123 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    C. H. Lui, Z. Q. Li, K. F. Mak, E. Cappelluti, and T. F. Heinz, Observation of an electrically tunable band gap in trilayer graphene, Nat. Phys. 7(12), 944 (2011)CrossRefGoogle Scholar
  12. 12.
    W. Bao, L. Jing, J. Velasco, Y. Lee, G. Liu, D. Tran, B. Standley, M. Aykol, S. B. Cronin, D. Smirnov, M. Koshino, E. McCann, M. Bockrath, and C. N. Lau, Stacking-dependent band gap and quantum transport in trilayer graphene, Nat. Phys. 7(12), 948 (2011)CrossRefGoogle Scholar
  13. 13.
    P. San-Jose, R. V. Gorbachev, A. K. Geim, K. S. Novoselov, and F. Guinea, Stacking boundaries and transport in bilayer graphene, Nano Lett. 14(4), 2052 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    L. Ju, Z. Shi, N. Nair, Y. Lv, C. Jin, J. Velasco, C. Ojeda-Aristizabal, H. A. Bechtel, M. C. Martin, A. Zettl, J. Analytis, and F. Wang, Topological valley transport at bilayer graphene domain walls, Nature 520(7549), 650 (2015)ADSCrossRefGoogle Scholar
  15. 15.
    I. Martin, Y. M. Blanter, and A. F. Morpurgo, Topological confinement in bilayer graphene, Phys. Rev. Lett. 100(3), 036804 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    G. W. Semenoff, V. Semenoff, and F. Zhou, Domain walls in gapped graphene, Phys. Rev. Lett. 101(8), 087204 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    L. L. Jiang, Z. Shi, B. Zeng, S. Wang, J.H. Kang, T. Joshi, C. Jin, L. Ju, J. Kim, T. Lyu, Y. R. Shen, M. Crommie, H. J. Gao, and F. Wang, Soliton-dependent plasmon reflection at bilayer graphene domain walls, Nat. Mater. 15(8), 840 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    L. J. Yin, W. X. Wang, Y. Zhang, Y. Y. Ou, H. T. Zhang, C. Y. Shen, and L. He, Observation of chirality transition of quasiparticles at stacking solitons in trilayer graphene, Phys. Rev. B 95, 081402 (2017)ADSCrossRefGoogle Scholar
  19. 19.
    L. L. Jiang, S. Wang, Z. Shi, C. Jin, M. I. B. Utama, S. Zhao, Y. R. Shen, H. J. Gao, G. Zhang, and F. Wang, Manipulation of domain-wall solitons in bi-and trilayer graphene, Nat. Nanotechnol. 13(3), 204 (2018)ADSCrossRefGoogle Scholar
  20. 20.
    L. Wang, I. Meric, P. Y. Huang, Q. Gao, Y. Gao, H. Tran, T. Taniguchi, K. Watanabe, L. M. Campos, D. A. Muller, J. Guo, P. Kim, J. Hone, K. L. Shepard, and C. R. Dean, One-dimensional electrical contact to a two-dimensional material, Science 342(6158), 614 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    A. Mishchenko, J. S. Tu, Y. Cao, R. V. Gorbachev, J. R. Wallbank, M. T. Greenaway, V. E. Morozov, S. V. Morozov, M. J. Zhu, S. L. Wong, F. Withers, C. R. Woods, Y.J. Kim, K. Watanabe, T. Taniguchi, E. E. Vdovin, O. Makarovsky, T. M. Fromhold, V. I. Fal’ko, A. K. Geim, L. Eaves, and K. S. Novoselov, Twist-controlled resonant tunnelling in graphene/boron nitride/graphene heterostructures, Nat. Nanotechnol. 9(10), 808 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    S. K. Son, M. Šiškins, C. Mullan, J. Yin, V. G. Kravets, A. Kozikov, S. Ozdemir, M. Alhazmi, M. Holwill, K. Watanabe, T. Taniguchi, D. Ghazaryan, K. S. Novoselov, V. I. Fal’ko, and A. Mishchenko, Graphene hot-electron light bulb: incandescence from hBN-encapsulated graphene in air, 2D Materials 5, 011006 (2018)CrossRefGoogle Scholar
  23. 23.
    W. Zhang, J. Yan, C. H. Chen, L. Lei, J. L. Kuo, Z. Shen, and L. J. Li, Molecular adsorption induces the transformation of rhombohedral-to Bernal-stacking order in trilayer graphene, Nat. Commun. 4(1), 2074 (2013)CrossRefGoogle Scholar
  24. 24.
    S. Berciaud, M. Y. Han, K. F. Mak, L. E. Brus, P. Kim, and T. F. Heinz, Electron and optical phonon temperatures in electrically biased graphene, Phys. Rev. Lett. 104(22), 227401 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    C. S. G. Cousins, Elasticity of carbon allotropes. IV. Rhombohedral graphite: Elasticity, zone-center optic modes, and phase transformation using transferred Keating parameters, Phys. Rev. B 67(2), 024110 (2003)Google Scholar
  26. 26.
    L. Piazza, D. J. Masiel, T. LaGrange, B. W. Reed, B. Barwick, and F. Carbone, Design and implementation of a fs-resolved transmission electron microscope based on thermionic gun technology, Chem. Phys. 423, 79 (2013)CrossRefGoogle Scholar
  27. 27.
    G. Berruto, I. Madan, Y. Murooka, G. M. Vanacore, E. Pomarico, J. Rajeswari, R. Lamb, P. Huang, A. J. Kruchkov, Y. Togawa, T. LaGrange, D. McGrouther, H. M. Rønnow, and F. Carbone, Laser-induced skyrmion writing and erasing in an ultrafast Cryo–Lorentz transmission electron microscope, Phys. Rev. Lett. 120(11), 117201 (2018)ADSCrossRefGoogle Scholar
  28. 28.
    J. B. Hu, G. M. Vanacore, A. Cepellotti, N. Marzari, and A. H. Zewail, Rippling ultrafast dynamics of suspended 2D monolayers, graphene, Proc. Natl. Acad. Sci. USA 113(43), E6555 (2016)CrossRefGoogle Scholar
  29. 29.
    S. Fahy, S. G. Louie, and M. L. Cohen, Pseudopotential total-energy study of the transition from rhombohedral graphite to diamond, Phys. Rev. B 34(2), 1191 (1986)ADSCrossRefGoogle Scholar
  30. 30.
    F. Isobe, H. Ohfuji, H. Sumiya, and T. Irifune, Nanolayered diamond sintered compact obtainedby direct conversion from highly oriented graphite under high pressure and high temperature, J. Nanomater. 2013, 380165 (2013)CrossRefGoogle Scholar
  31. 31.
    R. K. Raman, Y. Murooka, C. Y. Ruan, T. Yang, S. Berber, and D. Tomanek, Direct observation of optically induced transient structures in graphite using ultrafast electron crystallography, Phys. Rev. Lett. 101(7), 077401 (2008)ADSCrossRefGoogle Scholar
  32. 32.
    F. Carbone, O. H. Kwon, and A. H. Zewail, Dynamics of chemical bonding mapped by energy-resolved 4D electron microscopy, Science 325(5937), 181 (2009)ADSCrossRefGoogle Scholar
  33. 33.
    R. Nuske, A. Jurgilaitis, H. Enquist, M. Harb, Y. Fang, U. Hakanson, and J. Larsson, Transforming graphite to nanoscale diamonds by a femtosecond laser pulse, Appl. Phys. Lett. 100(4), 043102 (2012)ADSCrossRefGoogle Scholar
  34. 34.
    S. A. Solin and A. K. Ramdas, Raman spectrum of diamond, Phys. Rev. B 1(4), 1687 (1970)ADSCrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Tataiana Latychevskaia
    • 1
  • Seok-Kyun Son
    • 2
    • 3
  • Yaping Yang
    • 2
    • 3
  • Dale Chancellor
    • 2
    • 3
  • Michael Brown
    • 2
    • 3
  • Servet Ozdemir
    • 2
    • 3
  • Ivan Madan
    • 1
  • Gabriele Berruto
    • 1
  • Fabrizio Carbone
    • 1
  • Artem Mishchenko
    • 2
    • 3
  • Kostya S. Novoselov
    • 2
    • 3
    Email author
  1. 1.Institute of Physics, Laboratory for Ultrafast Microscopy and Electron Scattering (LUMES)École Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
  2. 2.National Graphene InstituteUniversity of ManchesterManchesterUK
  3. 3.School of Physics and AstronomyUniversity of ManchesterManchesterUK

Personalised recommendations