Advertisement

Frontiers of Physics

, 13:136803 | Cite as

Ferroelectric polarization reversal tuned by magnetic field in a ferroelectric BiFeO3/Nb-doped SrTiO3 heterojunction

  • Pei Li
  • Zhao-Meng Gao
  • Xiu-Shi Huang
  • Long-Fei Wang
  • Wei-Feng Zhang
  • Hai-Zhong Guo
Research article
  • 13 Downloads

Abstract

Interfacial resistive switching of a ferroelectric semiconductor heterojunction is highly advantageous for the newly developed ferroelectric memristors. Moreover, the interfacial state in the ferroelectric semiconductor heterojunction can be gradually modified by polarization reversal, which may give rise to continuously tunable resistive switching behavior. In this work, the interfacial state of a ferroelectric BiFeO3/Nb-doped SrTiO3 junction was modulated by ferroelectric polarization reversal. The dynamics of surface screening charges on the BiFeO3 layer was also investigated by surface potential measurements, and the decay of the surface potential could be speeded up by the magnetic field. Moreover, ferroelectric polarization reversal of the BiFeO3 layer was tuned by the magnetic field. This finding could provide a method to enhance the ferroelectric and electrical properties of ferroelectric BiFeO3 films by tuning the magnetic field.

Keywords

ferroelectric semiconductor heterojunction ferroelectric polarization reversal pulsed laser deposition Kelvin probe force microscopy 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 11574365).

References

  1. 1.
    J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, Epitaxial BiFeO3 multiferroic thin film heterostructures, Science 299(5613), 1719 (2003)ADSCrossRefGoogle Scholar
  2. 2.
    S. H. Baek, C. M. Folkman, J. W. Park, S. Lee, C. W. Bark, T. Tybell, and C. B. Eom, The nature of polarization fatigue in BiFeO3, Adv. Mater. 23(14), 1621 (2011)CrossRefGoogle Scholar
  3. 3.
    H. Guo, R. Zhao, K. Jin, L. Gu, D. Xiao, Z. Yang, X. Li, L. Wang, X. He, J. Gu, Q. Wan, C. Wang, H. Lu, C. Ge, M. He, and G. Yang, Interfacial-strain-induced structural and polarization evolutions in epitaxial multiferroic BiFeO3 (001) thin films, ACS Appl. Mater. Interfaces 7(4), 2944 (2015)CrossRefGoogle Scholar
  4. 4.
    L. Wang, K. J. Jin, J. X. Gu, C. Ma, X. He, J. Zhang, C. Wang, Y. Feng, Q. Wan, J. A. Shi, L. Gu, M. He, H. B. Lu, and G. Z. Yang, A new non-destructive readout by using photo-recovered surface potential contrast, Sci. Rep. 4(1), 6980 (2015)CrossRefGoogle Scholar
  5. 5.
    J. X. Gu, K. J. Jin, L. Wang, X. He, H. Z. Guo, C. Wang, M. He, and G. Z. Yang, Long-time relaxation of photo-induced influence on BiFeO3 thin films, J. Appl. Phys. 118(20), 204103 (2015)ADSCrossRefGoogle Scholar
  6. 6.
    T. Yang, X. Zhang, B. Chen, H. Guo, K. Jin, X. Wu, X. Gao, Z. Li, C. Wang, and X. Li, The evidence of giant surface flexoelectric field in (111) oriented BiFeO3 thin film, ACS Appl. Mater. Interfaces 9(6), 5600 (2017)CrossRefGoogle Scholar
  7. 7.
    B. C. Jeon, D. Lee, M. H. Lee, S. M. Yang, S. C. Chae, T. K. Song, S. D. Bu, J. S. Chung, J. G. Yoon, and T. W. Noh, Flexoelectric effect in the reversal of selfpolarization and associated changes in the electronic functional properties of BiFeO3 thin films, Adv. Mater. 25(39), 5643 (2013)CrossRefGoogle Scholar
  8. 8.
    R. Guo, L. You, M. Motapothula, Z. Zhang, M. B. H. Breese, L. Chen, D. Wu, and J. L. Wang, Influence of target composition and deposition temperature on the domain structure of BiFeO3 thin films, AIP Adv. 2(4), 042104 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    J. C. Yang, Q. He, P. Yu, and Y. H. Chu, BiFeO3 thin films: A playground for exploring electric-field control of multifunctionalities, Annu. Rev. Mater. Res. 45(1), 249 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    Y. Yang, I. C. Infante, B. Dkhil, and L. Bellaiche, Strain effects on multiferroic BiFeO3 films, Comp. Rend. Phys. 16(2), 193 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    Z. Gao, X. Huang, P. Li, L. Wang, L. Wei, W. Zhang, and H. Guo, Reversible resistance switching of 2D electron gas at LaAlO3/SrTiO3 heterointerface, Adv. Mater. Interfaces 5(8), 1701565 (2018)CrossRefGoogle Scholar
  12. 12.
    X. Huang, Z. Gao, P. Li, L. Wang, X. Liu, W. Zhang, and H. Guo, Resistance change effect in SrTiO3/Si(001) isotype heterojunction, J. Appl. Phys. 123(8), 084502 (2018)ADSCrossRefGoogle Scholar
  13. 13.
    P. Sharma, Y. Heo, B. K. Jang, Y. Y. Liu, J. Y. Li, C. H. Yang, and J. Seidel, Structural and electronic transformation pathways in morphotropic BiFeO3, Sci. Rep. 6(1), 32347 (2016)ADSCrossRefGoogle Scholar
  14. 14.
    C. Wang, K. J. Jin, Z. T. Xu, L. Wang, C. Ge, H. B. Lu, H. Z. Guo, M. He, and G. Z. Yang, Switchable diode effect and ferroelectric resistive switching in epitaxial BiFeO3 thin films, Appl. Phys. Lett. 98(19), 192901 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    C. Beekman, W. Siemons, M. Chi, N. Balke, J. Y. Howe, T. Z. Ward, P. Maksymovych, J. D. Budai, J. Z. Tischler, R. Xu, W. Liu, and H. M. Christen, Ferroelectric self-poling, switching, and monoclinic domain configuration in BiFeO3 thin films, Adv. Funct. Mater. 26(28), 5166 (2016)Google Scholar
  16. 16.
    Y. L. Huang, W. S. Chang, C. N. Van, H. J. Liu, K. A. Tsai, J. W. Chen, H. H. Kuo, W. Y. Tzeng, Y. C. Chen, C. L. Wu, C. W. Luo, Y. J. Hsu, and Y. H. Chu, Tunable photoelectrochemical performance of Au/BiFeO3 heterostructure, Nanoscale 8(34), 15795 (2016)CrossRefGoogle Scholar
  17. 17.
    J. H. Lee, I. Fina, X. Marti, Y. H. Kim, D. Hesse, and M. Alexe, Spintronic functionality of BiFeO3 domain walls, Adv. Mater. 26(41), 7078 (2014)CrossRefGoogle Scholar
  18. 18.
    Y. Zhou, L. Fang, L. You, P. Ren, L. Wang, and J. L. Wang, Photovoltaic property of domain engineered epitaxial BiFeO3 films, Appl. Phys. Lett. 105(25), 252903 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    F. Bi, M. Huang, H. Lee, C. B. Eom, P. Irvin, and J. Levy, LaAlO3 thickness window for electronically controlled magnetism at LaAlO3/SrTiO3 heterointerfaces, Appl. Phys. Lett. 107(8), 082402 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    M. Trassin, G. D. Luca, S. Manz, and M. Fiebig, Probing ferroelectric domain engineering in BiFeO3 thin films by second harmonic generation, Adv. Mater. 27(33), 4871 (2015)CrossRefGoogle Scholar
  21. 21.
    Q. Li, Y. Cao, P. Yu, R. K. Vasudevan, N. Laanait, A. Tselev, F. Xue, L. Q. Chen, P. Maksymovych, S. V. Kalinin, and N. Balke, Giant elastic tunability in strained BiFeO3 near an electrically induced phase transition, Nat. Commun. 6(1), 8985 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    H. Guo, Q. Li, Z. Yang, K. J. Jin, C. Ge, L. Gu, X. He, X. Li, R. Zhao, Q. Wan, J. Wang, M. He, C. Wang, H. Lu, Y. Yang, and G. Yang, Manipulating magnetoelectric properties by interfacial coupling in La0.3Sr0.7MnO3/Ba0.7Sr0.3TiO3 superlattices, Sci. Rep. 7(1), 7693 (2017)ADSCrossRefGoogle Scholar
  23. 23.
    R. Huang, H. C. Ding, W. I. Liang, Y. C. Gao, X. D. Tang, Q. He, C. G. Duan, Z. Zhu, J. Chu, C. A. J. Fisher, T. Hirayama, Y. Ikuhara, and Y. H. Chu, Atomic-scale visualization of polarization pinning and relaxation at coherent BiFeO3/LaAlO3 interfaces, Adv. Funct. Mater. 24(6), 793 (2014)CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Henan Key Laboratory of Photovoltaic Materials, School of Physics and ElectronicsHenan UniversityKaifengChina
  2. 2.School of Physical EngineeringZhengzhou UniversityZhengzhouChina

Personalised recommendations