Advertisement

Frontiers of Physics

, 13:137107 | Cite as

Pressure-induced superconducting ternary hydride H3SXe: A theoretical investigation

  • Da Li (李达)
  • Yan Liu (刘妍)
  • Fu-Bo Tian (田夫波)
  • Shu-Li Wei (魏书丽)
  • Zhao Liu (刘召)
  • De-Fang Duan (段德芳)
  • Bing-Bing Liu (刘冰冰)
  • Tian Cui (崔田)
Research article
  • 8 Downloads

Abstract

In general, heavy elements contribute only to acoustic phonon modes, which are less important for the superconductivity of hydrides. However, it was revealed that the heavier elements could enhance the phonon-mediated superconductivity in ternary hydrides. In the H3S–Xe system, a novel H3SXe compound was discovered by first-principle calculations. The structural phase transitions of H3SXe under high pressures were studied. The R-3m phase of H3SXe was predicted to appear at pressures above 80 GPa, which transitions to C2/m, P-3m1, and Pm-3m phases at pressures of 90, 160, and 220 GPa, respectively. It has been anticipated that the Pm-3m-H3SXe phase with a similar structural feature as that of Im-3m-H3S is a potential high-temperature superconductor with a Tc of 89 K at 240 GPa. The Tc value of H3SXe is lower than that of H3S at high pressure. The “H3S” host lattice of Pm-3m-H3SXe is a crucial factor influencing the Tc value. The Xe atoms could accelerate the hydrogen-bond symmetrization. With the increase of the atomic number, the Tc value linearly increases in the H3S–noble-gas-element system. This indicates that the superconductivity can be modulated by changing the relative atomic mass of the noble-gas element.

Keywords

ternary hydrides noble gas elements chemical precompression hydrogen-bond symmetrization 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11404134, 91745203, 51572108, 11634004, 11574109, and 11674122), Program for Changjiang Scholars and Innovative Research Team in University (No. IRT 15R23), National Fund for Fostering Talents of Basic Science (No. J1103202), Jilin Provincial Science and Technology Development Project of China (Grant Nos. 20160520016JH and 20170520116JH) and China Postdoctoral Science Foundation (Grant Nos. 2014M561279 and 2016T90246). Parts of calculations were performed in the High Performance Computing Center (HPCC) of Jilin University.

References

  1. 1.
    I. I. Mazin, Superconductivity: Extraordinarily conventional, Nature 525(7567), 40 (2015)ADSCrossRefGoogle Scholar
  2. 2.
    I. Božović, A conventional conundrum, Nat. Phys. 12(1), 22 (2016)CrossRefGoogle Scholar
  3. 3.
    A. P. Drozdov, M. I. Eremets, I. A. Troyan, V. Ksenofontov, and S. I. Shylin, Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system, Nature 525(7567), 73 (2015)ADSCrossRefGoogle Scholar
  4. 4.
    M. Einaga, M. Sakata, T. Ishikawa, K. Shimizu, M. I. Eremets, A. P. Drozdov, I. A. Troyan, N. Hirao, and Y. Ohishi, Crystal structure of the superconducting phase of sulfur hydride, Nat. Phys. 12(9), 835 (2016)CrossRefGoogle Scholar
  5. 5.
    D. Duan, Y. Liu, F. Tian, D. Li, X. Huang, Z. Zhao, H. Yu, B. Liu, W. Tian, and T. Cui, Pressure-induced metallization of dense (H2S)2H2 with high-T c superconductivity, Sci. Rep. 4(1), 6968 (2015)CrossRefGoogle Scholar
  6. 6.
    L. Ortenzi, E. Cappelluti, and L. Pietronero, Band structure and electron-phonon coupling in H3S: A tightbinding model, Phys. Rev. B 94(6), 064507 (2016)ADSCrossRefGoogle Scholar
  7. 7.
    D. A. Papaconstantopoulos, B. M. Klein, M. J. Mehl, and W. E. Pickett, Cubic H3S around 200 GPa: An atomic hydrogen superconductor stabilized by sulfur, Phys. Rev. B 91(18), 184511 (2015)ADSCrossRefGoogle Scholar
  8. 8.
    N. Bernstein, C. S. Hellberg, M. D. Johannes, I. I. Mazin, and M. J. Mehl, What superconducts in sulfur hydrides under pressure and why, Phys. Rev. B 91(6), 060511 (2015)ADSCrossRefGoogle Scholar
  9. 9.
    A. Bianconi and T. Jarlborg, Superconductivity above the lowest Earth temperature in pressurized sulfur hydride, EPL 112(3), 37001 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    Y. Quan and W. E. Pickett, Van Hove singularities and spectral smearing in high-temperature superconducting H3S, Phys. Rev. B 93(10), 104526 (2016)ADSCrossRefGoogle Scholar
  11. 11.
    A. F. Goncharov, S. S. Lobanov, I. Kruglov, X. M. Zhao, X. J. Chen, A. R. Oganov, Z. Konôpková, and V. B. Prakapenka, Hydrogen sulfide at high pressure: Change in stoichiometry, Phys. Rev. B 93(17), 174105 (2016)ADSCrossRefGoogle Scholar
  12. 12.
    Y. Yuan, Y. Feng, L. Bian, D. B. Zhang, and X. Z. Li, The quantum nature of the superconducting hydrogen sulfide at finite temperatures, arXiv: 1607.02348 [condmat] (2016)Google Scholar
  13. 13.
    A. P. Durajski, Quantitative analysis of nonadiabatic effects in dense H3S and PH3 superconductors, Sci. Rep. 6(1), 38570 (2016)ADSCrossRefGoogle Scholar
  14. 14.
    H. Wang, X. Li, G. Gao, Y. Li, and Y. Ma, Hydrogenrich superconductors at high pressures, Wiley Interdiscip. Rev. Comput. Mol. Sci. 8(1), e1330 (2018)CrossRefGoogle Scholar
  15. 15.
    Y. Yao and S. Tse John, Superconducting hydrogen sulfide, Chemistry 24(8), 1769 (2017)CrossRefGoogle Scholar
  16. 16.
    R. Szczesniak and A. P. Durajski, The isotope effect in H3S superconductor, Solid State Commun. 249, 30 (2017)ADSCrossRefGoogle Scholar
  17. 17.
    A. P. Durajski and R. Szczęśniak, First-principles study of superconducting hydrogen sulfide at pressure up to 500 GPa, Sci. Rep. 7(1), 4473 (2017)ADSCrossRefGoogle Scholar
  18. 18.
    S. Azadi and T. D. Kühne, High-pressure hydrogen sulfide by diffusion quantum Monte Carlo, J. Chem. Phys. 146(8), 084503 (2017)ADSCrossRefGoogle Scholar
  19. 19.
    R. Akashi, M. Kawamura, S. Tsuneyuki, Y. Nomura, and R. Arita, First-principles study of the pressure and crystal-structure dependences of the superconducting transition temperature in compressed sulfur hydrides, Phys. Rev. B 91(22), 224513 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    I. Errea, M. Calandra, C. J. Pickard, J. Nelson, R. J. Needs, Y. Li, H. Liu, Y. Zhang, Y. Ma, and F. Mauri, High-pressure hydrogen sulfide from first principles: A strongly anharmonic phonon-mediated superconductor, Phys. Rev. Lett. 114(15), 157004 (2015)ADSCrossRefGoogle Scholar
  21. 21.
    C. Heil and L. Boeri, Influence of bonding on superconductivity in high-pressure hydrides, Phys. Rev. B 92(6), 060508 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    Y. Ge, F. Zhang, and Y. Yao, First-principles demonstration of superconductivity at 280 K in hydrogen sulfide with low phosphorus substitution, Phys. Rev. B 93(22), 224513 (2016)ADSCrossRefGoogle Scholar
  23. 23.
    M. Komelj and H. Krakauer, Electron-phonon coupling and exchange-correlation effects in superconducting H3S under high pressure, Phys. Rev. B 92(20), 205125 (2015)ADSCrossRefGoogle Scholar
  24. 24.
    E. J. Nicol and J. P. Carbotte, Comparison of pressurized sulfur hydride with conventional superconductors, Phys. Rev. B 91(22), 220507 (2015)ADSCrossRefGoogle Scholar
  25. 25.
    A. F. Goncharov, S. S. Lobanov, V. B. Prakapenka, and E. Greenberg, Stable high-pressure phases in the H-S system determined by chemically reacting hydrogen and sulfur, Phys. Rev. B 95(14), 140101 (2017)ADSCrossRefGoogle Scholar
  26. 26.
    B. Guigue, A. Marizy, and P. Loubeyre, Direct synthesis of pure H3S from S and H elements: No evidence of the cubic superconducting phase up to 160 GPa, Phys. Rev. B 95(2), 020104 (2017)ADSCrossRefGoogle Scholar
  27. 27.
    H. Wang, J. S. Tse, K. Tanaka, T. Iitaka, and Y. Ma, Superconductive sodalite-like clathrate calcium hydride at high pressures, Proc. Natl. Acad. Sci. USA 109(17), 6463 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    Y. Li, L. Wang, H. Liu, Y. Zhang, J. Hao, C. J. Pickard, J. R. Nelson, R. J. Needs, W. Li, Y. Huang, I. Errea, M. Calandra, F. Mauri, and Y. Ma, Dissociation products and structures of solid H2S at strong compression, Phys. Rev. B 93(2), 020103 (2016)ADSCrossRefGoogle Scholar
  29. 29.
    T. Ishikawa, A. Nakanishi, K. Shimizu, H. Katayama- Yoshida, T. Oda, and N. Suzuki, Superconducting H5S2 phase in sulfur-hydrogen system under high-pressure, Sci. Rep. 6(1), 23160 (2016)ADSCrossRefGoogle Scholar
  30. 30.
    A. P. Drozdov, M. I. Eremets, and I. A. Troyan, Superconductivity above 100 K in PH3 at high pressures, arXiv: 1508.06224 [cond-mat] (2015)Google Scholar
  31. 31.
    H. Oh, S. Coh, and M. L. Cohen, Comparative study of high-Tc superconductivity in H3S and H3P, arXiv: 1606.09477 [cond-mat] (2016)Google Scholar
  32. 32.
    A. Shamp, T. Terpstra, T. Bi, Z. Falls, P. Avery, and E. Zurek, Decomposition Products of Phosphine Under Pressure: PH2 Stable and Superconducting? J. Am. Chem. Soc. 138(6), 1884 (2016)CrossRefGoogle Scholar
  33. 33.
    S. Zhang, Y. Wang, J. Zhang, H. Liu, X. Zhong, H. F. Song, G. Yang, L. Zhang, and Y. Ma, Phase Diagram and high-temperature superconductivity of compressed selenium hydrides, Sci. Rep. 5(1), 15433 (2015)ADSCrossRefGoogle Scholar
  34. 34.
    X. Zhong, H. Wang, J. Zhang, H. Liu, S. Zhang, H. F. Song, G. Yang, L. Zhang, and Y. Ma, Tellurium hydrides at high pressures: High-temperature superconductors, Phys. Rev. Lett. 116(5), 057002 (2016)ADSCrossRefGoogle Scholar
  35. 35.
    K. Abe and N. W. Ashcroft, Stabilization and highly metallic properties of heavy group-V hydrides at high pressures, Phys. Rev. B 92(22), 224109 (2015)ADSCrossRefGoogle Scholar
  36. 36.
    Y. Fu, et al., Chem. Mater. (2016)Google Scholar
  37. 37.
    Y. Ma, et al., The unexpected binding and superconductivity in SbH4 at high pressure, arXiv: 1506.03889 [cond-mat] (2015)Google Scholar
  38. 38.
    Y. Wang, H. Wang, J. S. Tse, T. Iitaka, and Y. Ma, Structural morphologies of high-pressure polymorphs of strontium hydrides, Phys. Chem. Chem. Phys. 17, 19379 (2015)CrossRefGoogle Scholar
  39. 39.
    Y. Li, J. Hao, H. Liu, J. S. Tse, Y. Wang, and Y. Ma, Pressure-stabilized superconductive yttrium hydrides, Sci. Rep. 5(1), 9948 (2015)ADSCrossRefGoogle Scholar
  40. 40.
    M. M. D. Esfahani, Z. Wang, A. R. Oganov, H. Dong, Q. Zhu, S. Wang, M. S. Rakitin, and X. F. Zhou, Superconductivity of novel tin hydrides (SnnHm) under pressure, Sci. Rep. 6(1), 22873 (2016)ADSCrossRefGoogle Scholar
  41. 41.
    H. Liu, I. I. Naumov, R. Hoffmann, N. W. Ashcroft, and R. J. Hemley, Potential high-T c superconducting lanthanum and yttrium hydrides at high pressure, Proc. Natl. Acad. Sci. USA 114, 6990 (2017)ADSCrossRefGoogle Scholar
  42. 42.
    I. A. Kruglov, et al., Uranium polyhydrides at moderate pressures: Prediction, synthesis, and expected superconductivity, arXiv: 1708.05251 [cond-mat] (2017)Google Scholar
  43. 43.
    M. Rahm, R. Hoffmann, and N. W. Ashcroft, Ternary gold hydrides: Routes to stable and potentially superconducting compounds, J. Am. Chem. Soc. 139(25), 8740 (2017)CrossRefGoogle Scholar
  44. 44.
    S. Zhang, L. Zhu, H. Liu, and G. Yang, Structure and electronic properties of Fe2SH3 compound under high pressure, Inorg. Chem. 55(21), 11434 (2016)CrossRefGoogle Scholar
  45. 45.
    T. Muramatsu, W. K. Wanene, M. Somayazulu, E. Vinitsky, D. Chandra, T. A. Strobel, V. V. Struzhkin, and R. J. Hemley, Metallization and superconductivity in the hydrogen-rich ionic salt BaReH9, J. Phys. Chem. C 119(32), 18007 (2015)CrossRefGoogle Scholar
  46. 46.
    Y. Ma, D. Duan, Z. Shao, H. Yu, H. Liu, F. Tian, X. Huang, D. Li, B. Liu, and T. Cui, Divergent synthesis routes and superconductivity of ternary hydride MgSiH6 at high pressure, Phys. Rev. B 96(14), 144518 (2017)ADSCrossRefGoogle Scholar
  47. 47.
    Y. Ma, D. Duan, Z. Shao, D. Li, L. Wang, H. Yu, F. Tian, H. Xie, B. Liu, and T. Cui, Prediction of superconducting ternary hydride MgGeH6: From divergent highpressure formation routes, Phys. Chem. Chem. Phys. 19(40), 27406 (2017)CrossRefGoogle Scholar
  48. 48.
    W. Kohn and L. J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. 140(4A), A1133 (1965)ADSMathSciNetCrossRefGoogle Scholar
  49. 49.
    P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Phys. Rev. 136(3B), B864 (1964)ADSMathSciNetCrossRefGoogle Scholar
  50. 50.
    G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59(3), 1758 (1999)ADSCrossRefGoogle Scholar
  51. 51.
    G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)ADSCrossRefGoogle Scholar
  52. 52.
    P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50(24), 17953 (1994)ADSCrossRefGoogle Scholar
  53. 53.
    J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)ADSCrossRefGoogle Scholar
  54. 54.
    A. Togo, F. Oba, and I. Tanaka, First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures, Phys. Rev. B 78(13), 134106 (2008)ADSCrossRefGoogle Scholar
  55. 55.
    P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, et al., QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials, J. Phys.: Condens. Matter 21(39), 395502 (2009)Google Scholar
  56. 56.
    Y. Wang, J. Lv, L. Zhu, and Y. Ma, CALYPSO: A method for crystal structure prediction, Comput. Phys. Commun. 183(10), 2063 (2012)ADSCrossRefGoogle Scholar
  57. 57.
    Y. Wang, J. Lv, L. Zhu, and Y. Ma, Crystal structure prediction via particle-swarm optimization, Phys. Rev. B 82(9), 094116 (2010)ADSCrossRefGoogle Scholar
  58. 58.
    Y. Yao and J. S. Tse, Electron-phonon coupling in the high-pressure hcp phase of xenon: A first-principles study, Phys. Rev. B 75(13), 134104 (2007)ADSCrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Da Li (李达)
    • 1
  • Yan Liu (刘妍)
    • 1
  • Fu-Bo Tian (田夫波)
    • 1
  • Shu-Li Wei (魏书丽)
    • 1
  • Zhao Liu (刘召)
    • 1
  • De-Fang Duan (段德芳)
    • 1
  • Bing-Bing Liu (刘冰冰)
    • 1
  • Tian Cui (崔田)
    • 1
  1. 1.State Key Lab of Superhard Materials, College of PhysicsJilin UniversityChangchunChina

Personalised recommendations