Advertisement

Frontiers of Physics

, 13:137309 | Cite as

Alkali-metal-induced topological nodal line semimetal in layered XN2 (X = Cr, Mo, W)

  • Ali Ebrahimian
  • Mehrdad Dadsetani
Research article
  • 20 Downloads

Abstract

Based on first principles calculations and the K·p effective model, we propose that alkali metal deposition on the surface of hexagonal XN2 (X = Cr, Mo, W) nanosheets induces topologically nontrivial phases in these systems. When spin orbit coupling (SOC) is disregarded, the electron-like conduction band from N-pz orbitals can be considered to cross the hole-like valence band from X-dz2 orbitals, thereby giving rise to a topological nodal line state in lithium-functionalized XN2 sheets (Li2MoN2 and Li2WN2). Such band crossing is protected by the existence of mirror reflection and time reversal symmetry. More interestingly, the bands cross exactly at the Fermi level, and the linear dispersion regions of such band crossings extend to as high as 0.9 eV above the crossing. For Li2CrN2, the results reveal the emergence of a Dirac cone at the Fermi level. Our calculations show that lattice compression decreases the thickness of a Li2CrN2 nanosheet, leading to phase transition to a nodal line semimetal. The evolution of the band gap of Li2XN2 at the Γ point indicates that the nontrivial topological character of Li2XN2 nanolayers is stable over a large strain range. When SOC is included, the band crossing point is gapped out giving rise to quantum spin Hall states in Li2CrN2 nanosheets, while for Li2MoN2, the SOC-induced gap at the crossing points is negligible.

Keywords

topological semimetal nodal-line states Dirac cone band inversion 

References

  1. 1.
    M. Z. Hasan and C. L. Kane, Topological insulators, Rev. Mod. Phys. 82(4), 3045 (2010)ADSCrossRefGoogle Scholar
  2. 2.
    K. He, Topological insulator: Both two-and threedimensional, Front. Phys. 7(2), 148 (2012)CrossRefGoogle Scholar
  3. 3.
    D. Hsieh, D. Qian, L. Wray, Y. Xia, Y. S. Hor, R. J. Cava, and M. Z. Hasan, A topological Dirac insulator in a quantum spin Hall phase, Nature 452(7190), 970 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Observation of a large-gap topological-insulator class with a single Dirac cone on the surface, Nat. Phys. 5(6), 398 (2009)CrossRefGoogle Scholar
  5. 5.
    S. Y. Xu, C. Liu, N. Alidoust, M. Neupane, D. Qian, I. Belopolski, J. D. Denlinger, Y. J. Wang, H. Lin, L. A. Wray, G. Landolt, B. Slomski, J. H. Dil, A. Marcinkova, E. Morosan, Q. Gibson, R. Sankar, F. C. Chou, R. J. Cava, A. Bansil, and M. Z. Hasan, Observation of a topological crystalline insulator phase and topological phase transition in Pb1–xSnxTe, Nat. Commun. 3(1), 1192 (2012)CrossRefGoogle Scholar
  6. 6.
    S. Y. Xu, C. Liu, S. K. Kushwaha, R. Sankar, J. W. Krizan, I. Belopolski, M. Neupane, G. Bian, N. Alidoust, T. R. Chang, H. T. Jeng, C. Y. Huang, W. F. Tsai, H. Lin, F. Chou, P. P. Shibayev, R. J. Cava, and M. Z. Hasan, Observation of Fermi arc surface states in a topological metal, Science 347(6219), 294 (2015)ADSCrossRefGoogle Scholar
  7. 7.
    Z. Wang, H. Weng, Q. Wu, X. Dai, and Z. Fang, Threedimensional Dirac semimetal and quantum transport in Cd3As2, Phys. Rev. B 88(12), 125427 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    B. Q. Lv, H. M. Weng, B. B. Fu, X. P. Wang, H. Miao, J. Ma, P. Richard, X. C. Huang, L. X. Zhao, G. F. Chen, Z. Fang, X. Dai, T. Qian, and H. Ding, Experimental discovery of Weyl semimetal TaAs, Phys. Rev. X 5(3), 031013 (2015)Google Scholar
  9. 9.
    C. K. Chiu and A. P. Schnyder, Classification of reflection-symmetry-protected topological semimetals and nodal superconductors, Phys. Rev. B 90(20), 205136 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    J. Behrends, J. W. Rhim, S. Liu, A. G. Grushin, and J. H. Bardarson, Nodal-line semimetals from Weyl superlattices, Phys. Rev. B 96(24), 245101 (2017)ADSCrossRefGoogle Scholar
  11. 11.
    T. Bzdušek, Q. Wu, A. Ruegg, M. Sigrist, and A. A. Soluyanov, Nodal-chain metals, Nature 538(7623), 75 (2016)ADSCrossRefGoogle Scholar
  12. 12.
    H. Weng, X. Dai, and Z. Fang, Topological semimetals predicted from first-principles calculations, J. Phys.: Condens. Matter 28(30), 303001 (2016)Google Scholar
  13. 13.
    B. Bradlyn, J. Cano, Z. Wang, M. G. Vergniory, C. Felser, R. J. Cava, and B. A. Bernevig, Beyond Dirac and Weyl fermions: Unconventional quasiparticles in conventional crystals, Science 353(6299), aaf5037 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    H. Weng, C. Fang, Z. Fang, and X. Dai, Coexistence of Weyl fermion and massless triply degenerate nodal points, Phys. Rev. B 94(16), 165201 (2016)ADSCrossRefGoogle Scholar
  15. 15.
    G. T. Volovik, Momentum space topology of fermion zero modes brane, JETP Lett. 75(2), 55 (2002)ADSCrossRefGoogle Scholar
  16. 16.
    S. M. Young, S. Zaheer, J. C. Y. Teo, C. L. Kane, E. J. Mele, and A. M. Rappe, Dirac semimetal in three dimensions, Phys. Rev. Lett. 108(14), 140405 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    M. Dadsetani and A. Ebrahimian, Breaking inversion symmetry induces excitonic peak in optical absorption of topological semimetal, J. Phys. Chem. Solids 100, 161 (2017)ADSCrossRefGoogle Scholar
  18. 18.
    M. Dadsetani and A. Ebrahimian, Optical distinctions between Weyl semimetal TaAs and Dirac semimetal Na3Bi: An ab initio investigation, Journal of Elec., Materi. 45, 5867 (2016)ADSCrossRefGoogle Scholar
  19. 19.
    Z. Wang, Y. Sun, X. Q. Chen, C. Franchini, G. Xu, H. Weng, X. Dai, and Z. Fang, Dirac semimetal and topological phase transitions in A3Bi (A = Na, K, Rb), Phys. Rev. B 85(19), 195320 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    A. A. Burkov, Topological semimetals, Nat. Mater. 15(11), 1145 (2016)ADSCrossRefGoogle Scholar
  21. 21.
    X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, Topological semimetal and Fermi arc surface states in the electronic structure of pyrochlore iridates, Phys. Rev. B 83(20), 205101 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    A. A. Burkov, M. D. Hook, and L. Balents, Topological nodal semimetals, Phys. Rev. B 84(23), 235126 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    M. Z. Hasan, S. Y. Xu, I. Belopolski, and S. M. Huang, Discovery of weyl fermion semimetals and topological fermi arc states, Annu. Rev. Condens. Matter Phys. 8(1), 289 (2017)ADSCrossRefGoogle Scholar
  24. 24.
    C. Fang, Y. Chen, H. Y. Kee, and L. Fu, Topological nodal line semimetals with and without spin-orbital coupling, Phys. Rev. B 92(8), 081201 (2015)ADSCrossRefGoogle Scholar
  25. 25.
    Y. X. Zhao, A. P. Schnyder, and Z. D. Wang, Unified theory of PT and CP invariant topological metals and nodal superconductors, Phys. Rev. Lett. 116(15), 156402 (2016)ADSCrossRefGoogle Scholar
  26. 26.
    R. Yu, Z. Fang, X. Dai, and H. Weng, Topological nodal line semimetals predicted from first-principles calculations, Front. Phys. 12(3), 127202 (2017)CrossRefGoogle Scholar
  27. 27.
    H. Weng, C. Fang, Z. Fang, B. A. Bernevig, and X. Dai, Weyl semimetal phase in noncentro-symmetric transition-metal monophosphides, Phys. Rev. X 5(1), 011029 (2015)Google Scholar
  28. 28.
    Q. D. Gibson, L. M. Schoop, L. Muechler, L. S. Xie, M. Hirschberger, N. P. Ong, R. Car, and R. J. Cava, Three-dimensional Dirac semimetals: Design principles and predictions of new materials, Phys. Rev. B 91(20), 205128 (2015)ADSCrossRefGoogle Scholar
  29. 29.
    M. Neupane, S. Y. Xu, R. Sankar, N. Alidoust, G. Bian, C. Liu, I. Belopolski, T. R. Chang, H. T. Jeng, H. Lin, A. Bansil, F. Chou, and M. Z. Hasan, Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2, Nat. Commun. 5(1), 3786 (2014)CrossRefGoogle Scholar
  30. 30.
    S. Borisenko, Q. Gibson, D. Evtushinsky, V. Zabolotnyy, B. Büchner, and R. J. Cava, experimental realization of a three-dimensional Dirac semimetal, Phys. Rev. Lett. 113(2), 027603 (2014)ADSCrossRefGoogle Scholar
  31. 31.
    Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S.-K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, and Y. L. Chen, Discovery of a threedimensional topological Dirac semimetal, Na3Bi, Science 343(6173), 864 (2014)ADSCrossRefGoogle Scholar
  32. 32.
    S. Y. Xu, C. Liu, S. K. Kushwaha, R. Sankar, J. W. Krizan, I. Belopolski, M. Neupane, G. Bian, N. Alidoust, T. R. Chang, H. T. Jeng, C. Y. Huang, W. F. Tsai, H. Lin, P. P. Shibayev, F. C. Chou, R. J. Cava, and M. Z. Hasan, Observation of Fermi arc surface states in a topological metal, Science 347(6219), 294 (2015)ADSCrossRefGoogle Scholar
  33. 33.
    G. Bian, T. R. Chang, R. Sankar, S. Y. Xu, H. Zheng, T. Neupert, C. K. Chiu, S. M. Huang, G. Chang, I. Belopolski, D. S. Sanchez, M. Neupane, N. Alidoust, C. Liu, B. Wang, C. C. Lee, H. T. Jeng, C. Zhang, Z. Yuan, S. Jia, A. Bansil, F. Chou, H. Lin, and M. Z. Hasan, Topological nodal-line fermions in spin-orbit metal PbTaSe2, Nat. Commun. 7, 10556 (2016)ADSCrossRefGoogle Scholar
  34. 34.
    Y. Wu, L. L. Wang, E. Mun, D. D. Johnson, D. Mou, L. Huang, Y. Lee, S. L. Bud’ko, P. C. Canfield, and A. Kaminski, Dirac node arcs in PtSn4, Nat. Phys. 12(7), 667 (2016)CrossRefGoogle Scholar
  35. 35.
    L. M. Schoop, M. N. Ali, C. Straßer, A. Topp, A. Varykhalov, D. Marchenko, V. Duppel, S. S. P. Parkin, B. V. Lotsch, and C. R. Ast, Dirac cone protected by non-symmorphic symmetry and three-dimensional Dirac line node in ZrSiS, Nat. Commun. 7, 11696 (2016)ADSCrossRefGoogle Scholar
  36. 36.
    M. Neupane, I. Belopolski, M. M. Hosen, D. S. Sanchez, R. Sankar, M. Szlawska, S. Y. Xu, K. Dimitri, N. Dhakal, P. Maldonado, P. M. Oppeneer, D. Kaczorowski, F. Chou, M. Z. Hasan, and T. Durakiewicz, Observation of topological nodal fermion semimetal phase in ZrSiS, Phys. Rev. B 93(20), 201104 (2016)ADSCrossRefGoogle Scholar
  37. 37.
    T. Liang, Q. Gibson, M. N. Ali, M. Liu, R. J. Cava, and N. P. Ong, Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2, Nat. Mater. 14(3), 280 (2015)ADSCrossRefGoogle Scholar
  38. 38.
    Y. Zhao, H. Liu, C. Zhang, H. Wang, J. Wang, Z. Lin, Y. Xing, H. Lu, J. Liu, Y. Wang, S. M. Brombosz, Z. Xiao, S. Jia, X. C. Xie, and J. Wang, Anisotropic Fermi surface and quantum limit transport in high mobility three-dimensional Dirac semimetal Cd3As2, Phys. Rev. X 5(3), 031037 (2015)Google Scholar
  39. 39.
    H. Wang, H. Wang, H. Liu, H. Lu, W. Yang, S. Jia, X. J. Liu, X. C. Xie, J. Wei, and J. Wang, Observation of superconductivity induced by a point contact on 3D Dirac semimetal Cd3As2 crystals, Nat. Mater. 15(1), 38 (2016)ADSCrossRefGoogle Scholar
  40. 40.
    H. Weng, Y. Liang, Q. Xu, R. Yu, Z. Fang, X. Dai, and Y. Kawazoe, Topological node-line semimetal in threedimensional graphene networks, Phys. Rev. B 92(4), 045108 (2015)ADSCrossRefGoogle Scholar
  41. 41.
    R. Yu, H. Weng, Z. Fang, X. Dai, and X. Hu, Topological node-line semimetal and Dirac semimetal state in antiperovskite Cu3PdN, Phys. Rev. Lett. 115(3), 036807 (2015)ADSCrossRefGoogle Scholar
  42. 42.
    Y. Kim, B. J. Wieder, C. L. Kane, and A. M. Rappe, Dirac line nodes in inversion-symmetric crystals, Phys. Rev. Lett. 115(3), 036806 (2015)ADSCrossRefGoogle Scholar
  43. 43.
    J. Zhang, M. Gao, J. Zhang, X. Wang, X. Zhang, M. Zhang, W. Niu, R. Zhang, and Y. Xu, Transport evidence of 3D topological nodal-line semimetal phase in ZrSiS, Front. Phys. 13(1), 137201 (2018)CrossRefGoogle Scholar
  44. 44.
    L. M. Schoop, M. N. Ali, C. Straßer, A. Topp, A. Varykhalov, D. Marchenko, V. Duppel, S. S. P. Parkin, B. V. Lotsch, and C. R. Ast, Dirac cone protected by non-symmorphic symmetry and three-dimensional Dirac line node in ZrSiS, Nat. Commun. 7, 11696 (2016)ADSCrossRefGoogle Scholar
  45. 45.
    S. M. Young and C. L. Kane, Dirac semimetals in two dimensions, Phys. Rev. Lett. 115(12), 126803 (2015)ADSCrossRefGoogle Scholar
  46. 46.
    C. Niu, P. M. Buhl, G. Bihlmayer, D. Wortmann, Y. Dai, S. Blügel, and Y. Mokrousov, Two-dimensional topological nodal line semimetal in layered X2Y (X = Ca, Sr, and Ba; Y=As, Sb, and Bi), Phys. Rev. B 95(23), 235138 (2017)ADSCrossRefGoogle Scholar
  47. 47.
    J. L. Lu, W. Luo, X. Y. Li, S. Q. Yang, J. X. Cao, X. G. Gong, and H. J. Xiang, Two-dimensional node-line semimetals in a honeycomb-Kagome lattice, Chin. Phys. Lett. 34(5), 057302 (2017)ADSCrossRefGoogle Scholar
  48. 48.
    Y. J. Jin, R. Wang, J. Z. Zhao, Y. P. Du, C. D. Zheng, L. Y. Gan, J. F. Liu, H. Xu, and S. Y. Tong, The prediction of a family group of two-dimensional node-line semimetals, Nanoscale 9(35), 13112 (2017)CrossRefGoogle Scholar
  49. 49.
    B. Yang, X. Zhang, and M. Zhao, Dirac node lines in two-dimensional Lieb lattices, Nanoscale 9(25), 8740 (2017)CrossRefGoogle Scholar
  50. 50.
    A. Ebrahimian and M. Dadsetani, Dependence of topological and optical properties on surface-terminated groups in two-dimensional molybdenum dinitride and tungsten dinitride nanosheets, Phys. Chem. Chem. Phys. 19(45), 30301 (2017)CrossRefGoogle Scholar
  51. 51.
    B. Feng, B. Fu, S. Kasamatsu, S. Ito, P. Cheng, C. C. Liu, Y. Feng, S. Wu, S. K. Mahatha, P. Sheverdyaeva, P. Moras, M. Arita, O. Sugino, T. C. Chiang, K. Shimada, K. Miyamoto, T. Okuda, K. Wu, L. Chen, Y. Yao, and I. Matsuda, Experimental realization of twodimensional Dirac nodal line fermions in monolayer Cu2Si, Nat. Commun. 8(1), 1007 (2017)ADSCrossRefGoogle Scholar
  52. 52.
    N. B. Kopnin, T. T. Heikkila, and G. E. Volovik, High temperature surface superconductivity in topological flat-band systems, Phys. Rev. B 83(22), 220503 (2011)ADSCrossRefGoogle Scholar
  53. 53.
    Z. Y. Zhu, Y. C. Cheng, and U. Schwingenschlögl, Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors, Phys. Rev. B 84(15), 153402 (2011)ADSCrossRefGoogle Scholar
  54. 54.
    D. Xiao, G. B. Liu, W. Feng, X. Xu, and W. Yao, Coupled spin and valley physics in monolayers of MoS2 and other group-VI Dichalcogenides, Phys. Rev. Lett. 108(19), 196802 (2012)ADSCrossRefGoogle Scholar
  55. 55.
    Y. Ma, L. Kou, X. Li, Y. Dai, and T. Heine, Twodimensional transition metal dichalcogenides with a hexagonal lattice: Room-temperature quantum spin Hall insulators, Phys. Rev. B 93(3), 035442 (2016)ADSCrossRefGoogle Scholar
  56. 56.
    P. F. Liu, L. Zhou, T. Frauenheim, and L. M. Wu, New quantum spin Hall insulator in two-dimensional MoS2, with periodically distributed pores, Nanoscale 8(9), 4915 (2016)ADSCrossRefGoogle Scholar
  57. 57.
    P. F. Liu, L. Zhou, T. Frauenheim, and L. M. Wu, Two dimensional hydrogenated molybdenum and tungsten dinitrides MN2H2 (M = Mo, W) as novel quantum spin hall insulators with high stability, Nanoscale 9(3), 1007 (2017)CrossRefGoogle Scholar
  58. 58.
    N. Alidoust, G. Bian, S. Y. Xu, R. Sankar, M. Neupane, C. Liu, I. Belopolski, D. X. Qu, J. D. Denlinger, F. C. Chou, and M. Z. Hasan, Observation of monolayer valence band spin-orbit effect and induced quantum well states in MoX2, Nat. Commun. 5(1), 4673 (2014)CrossRefGoogle Scholar
  59. 59.
    K. Dolui, I. Rungger, C. Das Pemmaraju, and S. Sanvito, Possible doping strategies for MoS2 monolayers: An ab initio study, Phys. Rev. B 88(7), 075420 (2013)ADSCrossRefGoogle Scholar
  60. 60.
    J. Heyd, G. E. Scuseria, and M. Ernzerhof, Hybrid functionals based on a screened Coulomb potential, J. Chem. Phys. 118(18), 8207 (2003)ADSCrossRefGoogle Scholar
  61. 61.
    K. Hummer, J. Harl, and G. Kresse, Heyd-Scuseria- Ernzerhof hybrid functional for calculating the lattice dynamics of semiconductors, Phys. Rev. B 80(11), 115205 (2009)ADSCrossRefGoogle Scholar
  62. 62.
    F. Tran and P. Blaha, Accurate band gaps of semiconductors and insulators with a semilocal exchangecorrelation potential, Phys. Rev. Lett. 102(22), 226401 (2009)ADSCrossRefGoogle Scholar
  63. 63.
    P. Blaha, K. Schwarz, G. Madsen, D. Kvasicka, and J. Luitz, WIEN2k, An Augmented Plane Wave Plus Local OrbitalsProgram for Calculating Crystal Properties, TU Vienna, Vienna, 2001Google Scholar
  64. 64.
    V. Blum, R. Gehrke, F. Hanke, P. Havu, V. Havu, X. Ren, K. Reuter, and M. Scheffler, Ab initio molecular simulations with numeric atom-centered orbitals, Comput. Phys. Commun. 180(11), 2175 (2009)ADSCrossRefzbMATHGoogle Scholar
  65. 65.
    J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)ADSCrossRefGoogle Scholar
  66. 66.
    X. Zhang, X. F. Qiao, W. Shi, J. B. Wu, D. S. Jiang, and P. H. Tan, Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material, Chem. Soc. Rev. 44(9), 2757 (2015)Google Scholar
  67. 67.
    See the Supplemental Material.Google Scholar
  68. 68.
    G. Bian, T. R. Chang, H. Zheng, S. Velury, S. Y. Xu, T. Neupert, C. K. Chiu, S. M. Huang, D. S. Sanchez, I. Belopolski, N. Alidoust, P. J. Chen, G. Chang, A. Bansil, H. T. Jeng, H. Lin, and M. Z. Hasan, Drumhead surface states and topological nodal-line fermions in TlTaSe2, Phys. Rev. B 93(12), 121113 (2016)ADSCrossRefGoogle Scholar
  69. 69.
    L. Fu, C. L. Kane, and E. J. Mele, Topological insulators in three dimensions, Phys. Rev. Lett. 98(10), 106803 (2007)ADSCrossRefGoogle Scholar
  70. 70.
    L. Fu and C. L. Kane, Topological insulators with inversion symmetry, Phys. Rev. B 76(4), 045302 (2007)ADSCrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsLorestan UniversityKhoramabadIran

Personalised recommendations