Monolayered semiconducting GeAsSe and SnSbTe with ultrahigh hole mobility
- 71 Downloads
Abstract
High carrier mobility and a direct semiconducting band gap are two key properties of materials for electronic device applications. Using first-principles calculations, we predict two types of two-dimensional semiconductors, ultrathin GeAsSe and SnSbTe nanosheets, with desirable electronic and optical properties. Both GeAsSe and SnSbTe sheets are energetically favorable, with formation energies of –0.19 and –0.09 eV/atom, respectively, and have excellent dynamical and thermal stability, as determined by phonon dispersion calculations and Born–Oppenheimer molecular dynamics simulations. The relatively weak interlayer binding energies suggest that these monolayer sheets can be easily exfoliated from the bulk crystals. Importantly, monolayer GeAsSe and SnSbTe possess direct band gaps (2.56 and 1.96 eV, respectively) and superior hole mobility (~ 20 000 cm2∙V–1∙s–1), and both exhibit notable absorption in the visible region. A comparison of the band edge positions with the redox potentials of water reveals that layered GeAsSe and SnSbTe are potential photocatalysts for water splitting. These exceptional properties make layered GeAsSe and SnSbTe promising candidates for use in future high-speed electronic and optoelectronic devices.
Keywords
2D GeAsSe and SnSbTe carrier mobility photocatalysts DFT calculationsNotes
Acknowledgements
This work was supported by the National Natural Science Foundation of China (Grant No. 11574040), the Fundamental Research Funds for the Central Universities of China (Grant Nos. DUT16-LAB01 and DUT17LAB19). Y. G. was supported by China Scholarship Council (CSC, Grant No. 201706060138). X. C. Z. was supported by the National Science Foundation (NSF) through the Nebraska Materials Research Science and Engineering Center (MRSEC) (Grant No. DMR-1420645). We acknowledge the computing resource from the Supercomputing Center of Dalian University of Technology and the University of Nebraska Holland Computing Center.
References
- 1.K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene, Nature 438(7065), 197 (2005)ADSCrossRefGoogle Scholar
- 2.J. Zhao, H. Liu, Z. Yu, R. Quhe, S. Zhou, Y. Wang, C. C. Liu, H. Zhong, N. Han, J. Lu, Y. Yao, and K. Wu, Rise of silicene: A competitive 2D material, Prog. Mater. Sci. 83, 24 (2016)CrossRefGoogle Scholar
- 3.Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nat. Nanotechnol. 7(11), 699 (2012)ADSCrossRefGoogle Scholar
- 4.L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, Black phosphorus field-effect transistors, Nat. Nanotechnol. 9(5), 372 (2014)ADSCrossRefGoogle Scholar
- 5.Y. Pan, L. Zhang, L. Huang, L. Li, L. Meng, M. Gao, Q. Huan, X. Lin, Y. Wang, S. Du, H. J. Freund, and H. J. Gao, Construction of 2D atomic crystals on transition metal surfaces: Graphene, silicene, and hafnene, Small 10(11), 2215 (2014)CrossRefGoogle Scholar
- 6.J. Lu, A. Carvalho, X. K. Chan, H. Liu, B. Liu, E. S. Tok, K. P. Loh, A. H. Castro Neto, and C. H. Sow, Atomic healing of defects in transition metal dichalcogenides, Nano Lett. 15(5), 3524 (2015)ADSCrossRefGoogle Scholar
- 7.M. S. Fuhrer, and J. Hone, Measurement of mobility in dual-gated MoS2 transistors, Nat. Nanotechnol. 8(3), 146 (2013)ADSCrossRefGoogle Scholar
- 8.H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, and P. D. Ye, Phosphorene: An unexplored 2D semiconductor with a high hole mobility, ACS Nano 8(4), 4033 (2014)CrossRefGoogle Scholar
- 9.J. O. Island, G.A. Steele, H. S. J. v. d. Zant, and A. Castellanos-Gomez, Environmental instability of fewlayer black phosphorus, 2D Mater. 2(1), 011002 (2015)CrossRefGoogle Scholar
- 10.A. Ziletti, A. Carvalho, D. K. Campbell, D. F. Coker, and A. H. Castro Neto, Oxygen defects in phosphorene, Phys. Rev. Lett. 114(4), 046801 (2015)ADSCrossRefGoogle Scholar
- 11.D. J. Late, B. Liu, H. S. S. R. Matte, C. N. R. Rao, and V. P. Dravid, Rapid characterization of ultrathin layers of chalcogenides on SiO2/Si substrates, Adv. Funct. Mater. 22(9), 1894 (2012)CrossRefGoogle Scholar
- 12.S. L. Li, K. Tsukagoshi, E. Orgiu, and P. Samorì, Charge transport and mobility engineering in twodimensional transition metal chalcogenide semiconductors, Chem. Soc. Rev. 45(1), 118 (2016)CrossRefGoogle Scholar
- 13.R. Fei, W. Li, J. Li, and L. Yang, Giant piezoelectricity of monolayer group IV monochalcogenides: SnSe, SnS, GeSe, and GeS, Appl. Phys. Lett. 107(17), 173104 (2015)ADSCrossRefGoogle Scholar
- 14.J. Zheng, H. Zhang, S. Dong, Y. Liu, C. Tai Nai, H. Suk Shin, H. Young Jeong, B. Liu, and K. Ping Loh, High yield exfoliation of two-dimensional chalcogenides using sodium naphthalenide, Nat. Commun. 5(1), 2995 (2014)ADSCrossRefGoogle Scholar
- 15.Y. Guo, S. Zhou, Y. Bai, and J. Zhao, Enhanced piezoelectric effect in Janus group-III chalcogenide monolayers, Appl. Phys. Lett. 110(16), 163102 (2017)ADSCrossRefGoogle Scholar
- 16.T. Gao, Q. Zhang, L. Li, X. Zhou, L. Li, H. Li, and T. Zhai, 2D ternary chalcogenides, Adv. Opt. Mater. 0(0), 1800058 (2018)CrossRefGoogle Scholar
- 17.Y. Guo, S. Zhou, Y. Bai, and J. Zhao, Oxidation resistance of monolayer group-IV monochalcogenides, ACS Appl. Mater. Interfaces 9(13), 12013 (2017)CrossRefGoogle Scholar
- 18.D. A. Bandurin, A. V. Tyurnina, G. L. Yu, A. Mishchenko, V. Zólyomi, S. V. Morozov, R. K. Kumar, R. V. Gorbachev, Z. R. Kudrynskyi, S. Pezzini, Z. D. Kovalyuk, U. Zeitler, K. S. Novoselov, A. Patanè, L. Eaves, I. V. Grigorieva, V. I. Fal’ko, A. K. Geim, and Y. Cao, High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe, Nat. Nanotechnol. 12(3), 223 (2017)ADSCrossRefGoogle Scholar
- 19.Y. Guo, S. Zhou, Y. Bai, and J. Zhao, Defects and oxidation of group-III monochalcogenide monolayers, J. Chem. Phys. 147(10), 104709 (2017)ADSCrossRefGoogle Scholar
- 20.L. C. Gomes, A. Carvalho, and A. H. Castro Neto, Vacancies and oxidation of two-dimensional group-IV monochalcogenides, Phys. Rev. B 94(5), 054103 (2016)ADSCrossRefGoogle Scholar
- 21.J. Wu, C. Tan, Z. Tan, Y. Liu, J. Yin, W. Dang, M. Wang, and H. Peng, Controlled synthesis of highmobility atomically thin bismuth oxyselenide crystals, Nano Lett. 17(5), 3021 (2017)ADSCrossRefGoogle Scholar
- 22.B. Wang, X. Niu, Y. Ouyang, Q. Zhou, and J. Wang, Ultrathin semiconducting Bi2Te2S and Bi2Te2Se with high electron mobilities, J. Phys. Chem. Lett. 9(3), 487 (2018)CrossRefGoogle Scholar
- 23.J. Li, Z. Wang, Y. Wen, J. Chu, L. Yin, R. Cheng, L. Lei, P. He, C. Jiang, L. Feng, and J. He, Highperformance near-infrared photodetector based on ultrathin Bi2O2Se nanosheets, Adv. Funct. Mater. 28(10), 1706437 (2018)CrossRefGoogle Scholar
- 24.J. Wu, H. Yuan, M. Meng, C. Chen, Y. Sun, Z. Chen, W. Dang, C. Tan, Y. Liu, J. Yin, Y. Zhou, S. Huang, H. Q. Xu, Y. Cui, H. Y. Hwang, Z. Liu, Y. Chen, B. Yan, and H. Peng, High electron mobility and quantum oscillations in non-encapsulated ultrathin semiconducting Bi2O2Se, Nat. Nanotechnol. 12(6), 530 (2017)ADSCrossRefGoogle Scholar
- 25.X. Zhang, X. Zhao, D. Wu, Y. Jing, and Z. Zhou, MnPSe3 monolayer: A promising 2D visible-light photohydrolytic catalyst with high carrier mobility, Adv. Sci. 3(10), 1600062 (2016)CrossRefGoogle Scholar
- 26.X. Li, X. Wu, and J. Yang, Half-metallicity in MnPSe3 exfoliated nanosheet with carrier doping, J. Am. Chem. Soc. 136(31), 11065 (2014)CrossRefGoogle Scholar
- 27.C. Zha, R. Wang, A. Smith, A. Prasad, R. A. Jarvis, and B. Luther-Davies, Optical properties and structural correlations of GeAsSe chalcogenide glasses, J. Mater. Sci. Mater. Electron. 18(S1), 389 (2007)CrossRefGoogle Scholar
- 28.D. T. Schaafsma, L. B. Shaw, B. Cole, J. S. Sanghera, and D. Aggarwal, Modeling of Dy3+-doped GeAsSe glass 1.3-m optical fiber amplifiers, IEEE Photonics Technol. Lett. 10(11), 1548 (1998)ADSCrossRefGoogle Scholar
- 29.A. Zakery, and M. Hatami, Nonlinear optical properties of pulsed-laser-deposited GeAsSe films and simulation of a nonlinear directional coupler switch, J. Opt. Soc. Am. B 22(3), 591 (2005)ADSCrossRefGoogle Scholar
- 30.N. Ashok, Y. L. Lee, and W. Shin, GeAsSe chalcogenide slot optical waveguide ring resonator for refractive index sensing, in: 2017 25th Optical Fiber Sensors Conference (OFS), 2017Google Scholar
- 31.F. Hulliger and T. Siegrist, The crystal structure of Ge-AsSe, Mater. Res. Bull. 16(10), 1245 (1981)CrossRefGoogle Scholar
- 32.J. H. Yang, Y. Zhang, W. J. Yin, X. G. Gong, B. I. Yakobson, and S. H. Wei, Two-dimensional SiS layers with promising electronic and optoelectronic properties: Theoretical prediction, Nano Lett. 16(2), 1110 (2016)ADSCrossRefGoogle Scholar
- 33.E. Ziambaras, J. Kleis, E. Schröder, and P. Hyldgaard, Potassium intercalation in graphite: A van der Waals density-functional study, Phys. Rev. B 76(15), 155425 (2007)ADSCrossRefGoogle Scholar
- 34.R. Zacharia, H. Ulbricht, and T. Hertel, Interlayer cohesive energy of graphite from thermal desorption of polyaromatic hydrocarbons, Phys. Rev. B 69(15), 155406 (2004)ADSCrossRefGoogle Scholar
- 35.G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)ADSCrossRefGoogle Scholar
- 36.G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59(3), 1758 (1999)ADSCrossRefGoogle Scholar
- 37.J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)ADSCrossRefGoogle Scholar
- 38.H. J. Monkhorst and J. D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13(12), 5188 (1976)ADSMathSciNetCrossRefGoogle Scholar
- 39.J. Heyd, G. E. Scuseria, and M. Ernzerhof, Hybrid functionals based on a screened Coulomb potential, J. Chem. Phys. 118(18), 8207 (2003)ADSCrossRefGoogle Scholar
- 40.S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction, J. Comput. Chem. 27(15), 1787 (2006)CrossRefGoogle Scholar
- 41.L. A. Burns, Á. V. Mayagoitia, B. G. Sumpter, and C. D. Sherrill, Density-functional approaches to noncovalent interactions: A comparison of dispersion corrections (DFT-D), exchange-hole dipole moment (XDM) theory, and specialized functionals, J. Chem. Phys. 134(8), 084107 (2011)ADSCrossRefGoogle Scholar
- 42.S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi, Phonons and related crystal properties from density-functional perturbation theory, Rev. Mod. Phys. 73(2), 515 (2001)ADSCrossRefGoogle Scholar
- 43.R. N. Barnett and U. Landman, Born-Oppenheimer molecular-dynamics simulations of finite systems: Structure and dynamics of (H2O)2, Phys. Rev. B 48(4), 2081 (1993)ADSCrossRefGoogle Scholar
- 44.G. J. Martyna, M. L. Klein, and M. Tuckerman, Nosé–Hoover chains: The canonical ensemble via continuous dynamics, J. Chem. Phys. 97(4), 2635 (1992)ADSCrossRefGoogle Scholar
- 45.M. D. Segall, R. Shah, C. J. Pickard, and M. C. Payne, Population analysis of plane-wave electronic structure calculations of bulk materials, Phys. Rev. B 54(23), 16317 (1996)ADSCrossRefGoogle Scholar
- 46.L. Zhou, Y. Guo, and J. Zhao, GeAs and SiAs monolayers: Novel 2D semiconductors with suitable band structures, Physica E 95, 149 (2018)ADSCrossRefGoogle Scholar
- 47.V. Chakrapani, J. C. Angus, A. B. Anderson, S. D. Wolter, B. R. Stoner, and G. U. Sumanasekera, Charge transfer equilibria between diamond and an aqueous oxygen electrochemical redox couple, Science 318(5855), 1424 (2007)ADSCrossRefGoogle Scholar
- 48.H. L. Zhuang and R. G. Hennig, Single-layer group-III monochalcogenide photocatalysts for water splitting, Chem. Mater. 25(15), 3232 (2013)CrossRefGoogle Scholar
- 49.Z. Ma, J. Zhuang, X. Zhang, and Z. Zhou, SiP monolayers: New 2D structures of group IV–V compounds for visible-light photohydrolytic catalysts, Front. Phys. 13(3), 138104 (2018)CrossRefGoogle Scholar
- 50.X. Zhang, Z. Zhang, D. Wu, X. Zhang, X. Zhao, and Z. Zhou, Computational screening of 2D materials and rational design of heterojunctions for water splitting photocatalysts, Small Methods 2(5), 1700359 (2018)CrossRefGoogle Scholar
- 51.A. R. Beal and H. P. Hughes, Kramers-Kronig analysis of the reflectivity spectra of 2H-MoS2, 2H-MoSe2 and 2H-MoTe2, J. Phys. C Solid State Phys. 12(5), 881 (1979)ADSCrossRefGoogle Scholar
- 52.S. Takagi, A. Toriumi, M. Iwase, and H. Tango, On the universality of inversion layer mobility in Si MOSFET’s: Part I-effects of substrate impurity concentration, IEEE Trans. Electron Dev. 41(12), 2357 (1994)ADSCrossRefGoogle Scholar
- 53.S. Bruzzone and G. Fiori, Ab-initio simulations of deformation potentials and electron mobility in chemically modified graphene and two-dimensional hexagonal boron-nitride, Appl. Phys. Lett. 99(22), 222108 (2011)ADSCrossRefGoogle Scholar
- 54.G. Fiori and G. Iannaccone, Multiscale modeling for graphene-based nanoscale transistors, Proc. IEEE 101(7), 1653 (2013)CrossRefGoogle Scholar
- 55.J. Qiao, X. Kong, Z. X. Hu, F. Yang, and W. Ji, Highmobility transport anisotropy and linear dichroism in few-layer black phosphorus, Nat. Commun. 5(1), 4475 (2014)CrossRefGoogle Scholar
- 56.J. Dai and X. C. Zeng, Titanium trisulfide monolayer: Theoretical prediction of a new directg semiconductor with high and anisotropic carrier mobility, Angew. Chem. Int. Ed. 127(26), 7682 (2015)CrossRefGoogle Scholar
- 57.Y. Guo, S. Zhou, J. Zhang, Y. Bai, and J. Zhao, Atomic structures and electronic properties of phosphorene grain boundaries, 2D Mater. 3(2), 025008 (2016)CrossRefGoogle Scholar
- 58.W. Zhang, Y. G. Wang, Y. Ding, J. Yin, and P. Zhang, Two-dimensional GeAsSe with high and unidirectional conductivity, Nanoscale (2018)Google Scholar