Frontiers of Physics

, 13:138117 | Cite as

Monolayered semiconducting GeAsSe and SnSbTe with ultrahigh hole mobility

  • Yu Guo
  • Nan Gao
  • Yizhen Bai
  • Jijun ZhaoEmail author
  • Xiao Cheng ZengEmail author
Research Article
Part of the following topical collections:
  1. Graphene and other Two-Dimensional Materials


High carrier mobility and a direct semiconducting band gap are two key properties of materials for electronic device applications. Using first-principles calculations, we predict two types of two-dimensional semiconductors, ultrathin GeAsSe and SnSbTe nanosheets, with desirable electronic and optical properties. Both GeAsSe and SnSbTe sheets are energetically favorable, with formation energies of –0.19 and –0.09 eV/atom, respectively, and have excellent dynamical and thermal stability, as determined by phonon dispersion calculations and Born–Oppenheimer molecular dynamics simulations. The relatively weak interlayer binding energies suggest that these monolayer sheets can be easily exfoliated from the bulk crystals. Importantly, monolayer GeAsSe and SnSbTe possess direct band gaps (2.56 and 1.96 eV, respectively) and superior hole mobility (~ 20 000 cm2∙V–1∙s–1), and both exhibit notable absorption in the visible region. A comparison of the band edge positions with the redox potentials of water reveals that layered GeAsSe and SnSbTe are potential photocatalysts for water splitting. These exceptional properties make layered GeAsSe and SnSbTe promising candidates for use in future high-speed electronic and optoelectronic devices.


2D GeAsSe and SnSbTe carrier mobility photocatalysts DFT calculations 



This work was supported by the National Natural Science Foundation of China (Grant No. 11574040), the Fundamental Research Funds for the Central Universities of China (Grant Nos. DUT16-LAB01 and DUT17LAB19). Y. G. was supported by China Scholarship Council (CSC, Grant No. 201706060138). X. C. Z. was supported by the National Science Foundation (NSF) through the Nebraska Materials Research Science and Engineering Center (MRSEC) (Grant No. DMR-1420645). We acknowledge the computing resource from the Supercomputing Center of Dalian University of Technology and the University of Nebraska Holland Computing Center.


  1. 1.
    K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene, Nature 438(7065), 197 (2005)ADSCrossRefGoogle Scholar
  2. 2.
    J. Zhao, H. Liu, Z. Yu, R. Quhe, S. Zhou, Y. Wang, C. C. Liu, H. Zhong, N. Han, J. Lu, Y. Yao, and K. Wu, Rise of silicene: A competitive 2D material, Prog. Mater. Sci. 83, 24 (2016)CrossRefGoogle Scholar
  3. 3.
    Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nat. Nanotechnol. 7(11), 699 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, Black phosphorus field-effect transistors, Nat. Nanotechnol. 9(5), 372 (2014)ADSCrossRefGoogle Scholar
  5. 5.
    Y. Pan, L. Zhang, L. Huang, L. Li, L. Meng, M. Gao, Q. Huan, X. Lin, Y. Wang, S. Du, H. J. Freund, and H. J. Gao, Construction of 2D atomic crystals on transition metal surfaces: Graphene, silicene, and hafnene, Small 10(11), 2215 (2014)CrossRefGoogle Scholar
  6. 6.
    J. Lu, A. Carvalho, X. K. Chan, H. Liu, B. Liu, E. S. Tok, K. P. Loh, A. H. Castro Neto, and C. H. Sow, Atomic healing of defects in transition metal dichalcogenides, Nano Lett. 15(5), 3524 (2015)ADSCrossRefGoogle Scholar
  7. 7.
    M. S. Fuhrer, and J. Hone, Measurement of mobility in dual-gated MoS2 transistors, Nat. Nanotechnol. 8(3), 146 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, and P. D. Ye, Phosphorene: An unexplored 2D semiconductor with a high hole mobility, ACS Nano 8(4), 4033 (2014)CrossRefGoogle Scholar
  9. 9.
    J. O. Island, G.A. Steele, H. S. J. v. d. Zant, and A. Castellanos-Gomez, Environmental instability of fewlayer black phosphorus, 2D Mater. 2(1), 011002 (2015)CrossRefGoogle Scholar
  10. 10.
    A. Ziletti, A. Carvalho, D. K. Campbell, D. F. Coker, and A. H. Castro Neto, Oxygen defects in phosphorene, Phys. Rev. Lett. 114(4), 046801 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    D. J. Late, B. Liu, H. S. S. R. Matte, C. N. R. Rao, and V. P. Dravid, Rapid characterization of ultrathin layers of chalcogenides on SiO2/Si substrates, Adv. Funct. Mater. 22(9), 1894 (2012)CrossRefGoogle Scholar
  12. 12.
    S. L. Li, K. Tsukagoshi, E. Orgiu, and P. Samorì, Charge transport and mobility engineering in twodimensional transition metal chalcogenide semiconductors, Chem. Soc. Rev. 45(1), 118 (2016)CrossRefGoogle Scholar
  13. 13.
    R. Fei, W. Li, J. Li, and L. Yang, Giant piezoelectricity of monolayer group IV monochalcogenides: SnSe, SnS, GeSe, and GeS, Appl. Phys. Lett. 107(17), 173104 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    J. Zheng, H. Zhang, S. Dong, Y. Liu, C. Tai Nai, H. Suk Shin, H. Young Jeong, B. Liu, and K. Ping Loh, High yield exfoliation of two-dimensional chalcogenides using sodium naphthalenide, Nat. Commun. 5(1), 2995 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    Y. Guo, S. Zhou, Y. Bai, and J. Zhao, Enhanced piezoelectric effect in Janus group-III chalcogenide monolayers, Appl. Phys. Lett. 110(16), 163102 (2017)ADSCrossRefGoogle Scholar
  16. 16.
    T. Gao, Q. Zhang, L. Li, X. Zhou, L. Li, H. Li, and T. Zhai, 2D ternary chalcogenides, Adv. Opt. Mater. 0(0), 1800058 (2018)CrossRefGoogle Scholar
  17. 17.
    Y. Guo, S. Zhou, Y. Bai, and J. Zhao, Oxidation resistance of monolayer group-IV monochalcogenides, ACS Appl. Mater. Interfaces 9(13), 12013 (2017)CrossRefGoogle Scholar
  18. 18.
    D. A. Bandurin, A. V. Tyurnina, G. L. Yu, A. Mishchenko, V. Zólyomi, S. V. Morozov, R. K. Kumar, R. V. Gorbachev, Z. R. Kudrynskyi, S. Pezzini, Z. D. Kovalyuk, U. Zeitler, K. S. Novoselov, A. Patanè, L. Eaves, I. V. Grigorieva, V. I. Fal’ko, A. K. Geim, and Y. Cao, High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe, Nat. Nanotechnol. 12(3), 223 (2017)ADSCrossRefGoogle Scholar
  19. 19.
    Y. Guo, S. Zhou, Y. Bai, and J. Zhao, Defects and oxidation of group-III monochalcogenide monolayers, J. Chem. Phys. 147(10), 104709 (2017)ADSCrossRefGoogle Scholar
  20. 20.
    L. C. Gomes, A. Carvalho, and A. H. Castro Neto, Vacancies and oxidation of two-dimensional group-IV monochalcogenides, Phys. Rev. B 94(5), 054103 (2016)ADSCrossRefGoogle Scholar
  21. 21.
    J. Wu, C. Tan, Z. Tan, Y. Liu, J. Yin, W. Dang, M. Wang, and H. Peng, Controlled synthesis of highmobility atomically thin bismuth oxyselenide crystals, Nano Lett. 17(5), 3021 (2017)ADSCrossRefGoogle Scholar
  22. 22.
    B. Wang, X. Niu, Y. Ouyang, Q. Zhou, and J. Wang, Ultrathin semiconducting Bi2Te2S and Bi2Te2Se with high electron mobilities, J. Phys. Chem. Lett. 9(3), 487 (2018)CrossRefGoogle Scholar
  23. 23.
    J. Li, Z. Wang, Y. Wen, J. Chu, L. Yin, R. Cheng, L. Lei, P. He, C. Jiang, L. Feng, and J. He, Highperformance near-infrared photodetector based on ultrathin Bi2O2Se nanosheets, Adv. Funct. Mater. 28(10), 1706437 (2018)CrossRefGoogle Scholar
  24. 24.
    J. Wu, H. Yuan, M. Meng, C. Chen, Y. Sun, Z. Chen, W. Dang, C. Tan, Y. Liu, J. Yin, Y. Zhou, S. Huang, H. Q. Xu, Y. Cui, H. Y. Hwang, Z. Liu, Y. Chen, B. Yan, and H. Peng, High electron mobility and quantum oscillations in non-encapsulated ultrathin semiconducting Bi2O2Se, Nat. Nanotechnol. 12(6), 530 (2017)ADSCrossRefGoogle Scholar
  25. 25.
    X. Zhang, X. Zhao, D. Wu, Y. Jing, and Z. Zhou, MnPSe3 monolayer: A promising 2D visible-light photohydrolytic catalyst with high carrier mobility, Adv. Sci. 3(10), 1600062 (2016)CrossRefGoogle Scholar
  26. 26.
    X. Li, X. Wu, and J. Yang, Half-metallicity in MnPSe3 exfoliated nanosheet with carrier doping, J. Am. Chem. Soc. 136(31), 11065 (2014)CrossRefGoogle Scholar
  27. 27.
    C. Zha, R. Wang, A. Smith, A. Prasad, R. A. Jarvis, and B. Luther-Davies, Optical properties and structural correlations of GeAsSe chalcogenide glasses, J. Mater. Sci. Mater. Electron. 18(S1), 389 (2007)CrossRefGoogle Scholar
  28. 28.
    D. T. Schaafsma, L. B. Shaw, B. Cole, J. S. Sanghera, and D. Aggarwal, Modeling of Dy3+-doped GeAsSe glass 1.3-m optical fiber amplifiers, IEEE Photonics Technol. Lett. 10(11), 1548 (1998)ADSCrossRefGoogle Scholar
  29. 29.
    A. Zakery, and M. Hatami, Nonlinear optical properties of pulsed-laser-deposited GeAsSe films and simulation of a nonlinear directional coupler switch, J. Opt. Soc. Am. B 22(3), 591 (2005)ADSCrossRefGoogle Scholar
  30. 30.
    N. Ashok, Y. L. Lee, and W. Shin, GeAsSe chalcogenide slot optical waveguide ring resonator for refractive index sensing, in: 2017 25th Optical Fiber Sensors Conference (OFS), 2017Google Scholar
  31. 31.
    F. Hulliger and T. Siegrist, The crystal structure of Ge-AsSe, Mater. Res. Bull. 16(10), 1245 (1981)CrossRefGoogle Scholar
  32. 32.
    J. H. Yang, Y. Zhang, W. J. Yin, X. G. Gong, B. I. Yakobson, and S. H. Wei, Two-dimensional SiS layers with promising electronic and optoelectronic properties: Theoretical prediction, Nano Lett. 16(2), 1110 (2016)ADSCrossRefGoogle Scholar
  33. 33.
    E. Ziambaras, J. Kleis, E. Schröder, and P. Hyldgaard, Potassium intercalation in graphite: A van der Waals density-functional study, Phys. Rev. B 76(15), 155425 (2007)ADSCrossRefGoogle Scholar
  34. 34.
    R. Zacharia, H. Ulbricht, and T. Hertel, Interlayer cohesive energy of graphite from thermal desorption of polyaromatic hydrocarbons, Phys. Rev. B 69(15), 155406 (2004)ADSCrossRefGoogle Scholar
  35. 35.
    G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)ADSCrossRefGoogle Scholar
  36. 36.
    G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59(3), 1758 (1999)ADSCrossRefGoogle Scholar
  37. 37.
    J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)ADSCrossRefGoogle Scholar
  38. 38.
    H. J. Monkhorst and J. D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13(12), 5188 (1976)ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    J. Heyd, G. E. Scuseria, and M. Ernzerhof, Hybrid functionals based on a screened Coulomb potential, J. Chem. Phys. 118(18), 8207 (2003)ADSCrossRefGoogle Scholar
  40. 40.
    S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction, J. Comput. Chem. 27(15), 1787 (2006)CrossRefGoogle Scholar
  41. 41.
    L. A. Burns, Á. V. Mayagoitia, B. G. Sumpter, and C. D. Sherrill, Density-functional approaches to noncovalent interactions: A comparison of dispersion corrections (DFT-D), exchange-hole dipole moment (XDM) theory, and specialized functionals, J. Chem. Phys. 134(8), 084107 (2011)ADSCrossRefGoogle Scholar
  42. 42.
    S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi, Phonons and related crystal properties from density-functional perturbation theory, Rev. Mod. Phys. 73(2), 515 (2001)ADSCrossRefGoogle Scholar
  43. 43.
    R. N. Barnett and U. Landman, Born-Oppenheimer molecular-dynamics simulations of finite systems: Structure and dynamics of (H2O)2, Phys. Rev. B 48(4), 2081 (1993)ADSCrossRefGoogle Scholar
  44. 44.
    G. J. Martyna, M. L. Klein, and M. Tuckerman, Nosé–Hoover chains: The canonical ensemble via continuous dynamics, J. Chem. Phys. 97(4), 2635 (1992)ADSCrossRefGoogle Scholar
  45. 45.
    M. D. Segall, R. Shah, C. J. Pickard, and M. C. Payne, Population analysis of plane-wave electronic structure calculations of bulk materials, Phys. Rev. B 54(23), 16317 (1996)ADSCrossRefGoogle Scholar
  46. 46.
    L. Zhou, Y. Guo, and J. Zhao, GeAs and SiAs monolayers: Novel 2D semiconductors with suitable band structures, Physica E 95, 149 (2018)ADSCrossRefGoogle Scholar
  47. 47.
    V. Chakrapani, J. C. Angus, A. B. Anderson, S. D. Wolter, B. R. Stoner, and G. U. Sumanasekera, Charge transfer equilibria between diamond and an aqueous oxygen electrochemical redox couple, Science 318(5855), 1424 (2007)ADSCrossRefGoogle Scholar
  48. 48.
    H. L. Zhuang and R. G. Hennig, Single-layer group-III monochalcogenide photocatalysts for water splitting, Chem. Mater. 25(15), 3232 (2013)CrossRefGoogle Scholar
  49. 49.
    Z. Ma, J. Zhuang, X. Zhang, and Z. Zhou, SiP monolayers: New 2D structures of group IV–V compounds for visible-light photohydrolytic catalysts, Front. Phys. 13(3), 138104 (2018)CrossRefGoogle Scholar
  50. 50.
    X. Zhang, Z. Zhang, D. Wu, X. Zhang, X. Zhao, and Z. Zhou, Computational screening of 2D materials and rational design of heterojunctions for water splitting photocatalysts, Small Methods 2(5), 1700359 (2018)CrossRefGoogle Scholar
  51. 51.
    A. R. Beal and H. P. Hughes, Kramers-Kronig analysis of the reflectivity spectra of 2H-MoS2, 2H-MoSe2 and 2H-MoTe2, J. Phys. C Solid State Phys. 12(5), 881 (1979)ADSCrossRefGoogle Scholar
  52. 52.
    S. Takagi, A. Toriumi, M. Iwase, and H. Tango, On the universality of inversion layer mobility in Si MOSFET’s: Part I-effects of substrate impurity concentration, IEEE Trans. Electron Dev. 41(12), 2357 (1994)ADSCrossRefGoogle Scholar
  53. 53.
    S. Bruzzone and G. Fiori, Ab-initio simulations of deformation potentials and electron mobility in chemically modified graphene and two-dimensional hexagonal boron-nitride, Appl. Phys. Lett. 99(22), 222108 (2011)ADSCrossRefGoogle Scholar
  54. 54.
    G. Fiori and G. Iannaccone, Multiscale modeling for graphene-based nanoscale transistors, Proc. IEEE 101(7), 1653 (2013)CrossRefGoogle Scholar
  55. 55.
    J. Qiao, X. Kong, Z. X. Hu, F. Yang, and W. Ji, Highmobility transport anisotropy and linear dichroism in few-layer black phosphorus, Nat. Commun. 5(1), 4475 (2014)CrossRefGoogle Scholar
  56. 56.
    J. Dai and X. C. Zeng, Titanium trisulfide monolayer: Theoretical prediction of a new directg semiconductor with high and anisotropic carrier mobility, Angew. Chem. Int. Ed. 127(26), 7682 (2015)CrossRefGoogle Scholar
  57. 57.
    Y. Guo, S. Zhou, J. Zhang, Y. Bai, and J. Zhao, Atomic structures and electronic properties of phosphorene grain boundaries, 2D Mater. 3(2), 025008 (2016)CrossRefGoogle Scholar
  58. 58.
    W. Zhang, Y. G. Wang, Y. Ding, J. Yin, and P. Zhang, Two-dimensional GeAsSe with high and unidirectional conductivity, Nanoscale (2018)Google Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology)Ministry of EducationDalianChina
  2. 2.Department of ChemistryUniversity of Nebraska–LincolnLincolnUSA
  3. 3.Department of Chemical & Biomolecular Engineering and Department of Mechanical & Materials EngineeringUniversity of Nebraska–LincolnLincolnUSA

Personalised recommendations