Advertisement

Frontiers of Physics

, 13:134207 | Cite as

All-dielectric bowtie waveguide with deep subwavelength mode confinement

  • Wen-Cheng Yue
  • Pei-Jun YaoEmail author
  • Li-Xin Xu
  • Hai Ming
Research Article
  • 25 Downloads

Abstract

Plasmonic waveguides and conventional dielectric waveguides have favorable characteristics in photonic integrated circuits. Typically, plasmonic waveguides can provide subwavelength mode confinement, as shown by their small mode area, whereas conventional dielectric waveguides guide light with low loss, as shown by their long propagation length. However, the simultaneous achievement of subwavelength mode confinement and low-loss propagation remains limited. In this paper, we propose a novel design of an alldielectric bowtie waveguide, which simultaneously exhibits both subwavelength mode confinement and theoretically lossless propagation. Contrary to traditional dielectric waveguides, where the guidance of light is based on total internal reflection, the principle of the all-dielectric bowtie waveguide is based on the combined use of the conservation of the normal component of the electric displacement and the tangential component of the electric field, such that it can achieve a mode area comparable to its plasmonic counterparts. The mode distribution in the all-dielectric bowtie waveguide can be precisely controlled by manipulating the geometric design. Our work shows that it is possible to achieve extreme light confinement by using dielectric instead of lossy metals.

Keywords

dielectric waveguide nanophotonics plasmonics photonic integrated circuits silicon 

Notes

Acknowledgements

This work was supported by the National Key Basic Research Program of China under Grant No. 2012CB922003, and the National Natural Science Foundation of China (NSFC) under Grant No. 61177053, and Anhui Provincial Natural Science Foundation under Grant No. 1508085SMA205.

References

  1. 1.
    R. Kirchain and L. Kimerling, A roadmap for nanophotonics, Nat. Photonics 1(6), 303 (2007)ADSCrossRefGoogle Scholar
  2. 2.
    F. Dell’Olio and V. M. Passaro, Optical sensing by optimized silicon slot waveguides, Opt. Express 15(8), 4977 (2007)ADSCrossRefGoogle Scholar
  3. 3.
    K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, Sub-femtojoule alloptical switching using a photonic-crystal nanocavity, Nat. Photonics 4(7), 477 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, Surface-plasmon circuitry, Phys. Today 61(5), 44 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    D. F. Pile and D. K. Gramotnev, Channel plasmon–polariton in a triangular groove on a metal surface, Opt. Lett. 29(10), 1069 (2004)ADSCrossRefGoogle Scholar
  6. 6.
    V. J. Sorger, N. D. Lanzillotti-Kimura, R. M. Ma, and X. Zhang, Ultra-compact silicon nanophotonic modulator with broadband response, Nanophotonics 1(1), 17 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, Plasmon lasers at deep subwavelength scale, Nature 461(7264), 629 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    J. N. Caspers, J. S. Aitchison, and M. Mojahedi, Experimental demonstration of an integrated hybrid plasmonic polarization rotator, Opt. Lett. 38(20), 4054 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    A. D. Boardman, Electromagnetic Surface Modes, John Wiley & Sons, 1982Google Scholar
  10. 10.
    W. L. Barnes, A. Dereux, and T. W. Ebbesen, Surface plasmon subwavelength optics, Nature 424(6950), 824 (2003)ADSCrossRefGoogle Scholar
  11. 11.
    J. Wang, A review of recent progress in plasmon-assisted nanophotonic devices, Front. Optoelectron. 7(3), 320 (2014)CrossRefGoogle Scholar
  12. 12.
    D. K. Gramotnev and S. I. Bozhevolnyi, Plasmonics beyond the diffraction limit, Nat. Photonics 4(2), 83 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    J. Takahara and T. Kobayashi, Nano-optical waveguides breaking through diffraction limit of light, in: Optics East. International Society for Optics and Photonics, 2004, pp 158–172Google Scholar
  14. 14.
    S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. Requicha, Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides, Nat. Mater. 2(4), 229 (2003)ADSCrossRefGoogle Scholar
  15. 15.
    R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, Geometries and materials for subwavelength surface plasmon modes, J. Opt. Soc. Am. A 21(12), 2442 (2004)ADSCrossRefGoogle Scholar
  16. 16.
    J. B. Khurgin, How to deal with the loss in plasmonics and metamaterials, Nat. Nanotechnol. 10(1), 2 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    R. F. Oulton, V. J. Sorger, D. Genov, D. Pile, and X. Zhang, A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation, Nat. Photonics 2(8), 496 (2008)CrossRefGoogle Scholar
  18. 18.
    D. Dai and S. He, A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement, Opt. Express 17(19), 16646 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    I. Avrutsky, R. Soref, and W. Buchwald, Subwavelength plasmonic modes in a conductor-gapdielectric system with a nanoscale gap, Opt. Express 18(1), 348 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    Y. Bian, Z. Zheng, Y. Liu, J. Zhu, and T. Zhou, Dielectric-loaded surface plasmon polariton waveguide with a holey ridge for propagation-loss reduction and subwavelength mode confinement, Opt. Express 18(23), 23756 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    Y. Zhao, and L. Zhu, Coaxial hybrid plasmonic nanowire waveguides, J. Opt. Soc. Am. B 27(6), 1260 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    Y. Bian, Z. Zheng, X. Zhao, J. Zhu, and T. Zhou, Symmetric hybrid surface plasmon polariton waveguides for 3d photonic integration, Opt. Express 17(23), 21320 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    L. Chen, T. Zhang, X. Li, and W. Huang, Novel hybrid plasmonic waveguide consisting of two identical dielectric nanowires symmetrically placed on each side of a thin metal film, Opt. Express 20(18), 20535 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    C. Xiang and J. Wang, Long-range hybrid plasmonic slot waveguide, IEEE Photon. J. 5(2), 4800311 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    Y. Bian, Z. Zheng, Y. Liu, J. Liu, J. Zhu, and T. Zhou, Hybrid wedge plasmon polariton waveguide with good fabrication-error-tolerance for ultra-deepsubwavelength mode confinement, Opt. Express 19(23), 22417 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    Y. Bian and Q. Gong, Bow-tie hybrid plasmonic waveguides, J. Lightwave Technol. 32(23), 3902 (2014)Google Scholar
  27. 27.
    Z. L. Zhang and J. Wang, Long-range hybrid wedge plasmonic waveguide, Sci. Rep. 4, 6870 (2014)ADSCrossRefGoogle Scholar
  28. 28.
    Y. Ma, G. Farrell, Y. Semenova, and Q. Wu, Hybrid nanowedge plasmonic waveguide for low loss propagation with ultra-deep-subwavelength mode confinement, Opt. Lett. 39(4), 973 (2014)ADSCrossRefGoogle Scholar
  29. 29.
    Y. Ma, G. Farrell, Y. Semenova, and Q. Wu, A hybrid wedge-to-wedge plasmonic waveguide with low loss propagation and ultra-deep-nanoscale mode confinement, J. Lightwave Technol. 33(18), 3827 (2015)ADSCrossRefGoogle Scholar
  30. 30.
    A. Boltasseva and H. A. Atwater, Low-loss plasmonic metamaterials, Science 331(6015), 290 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, Realization of an all-dielectric zero-index optical metamaterial, Nat. Photonics 7(10), 791 (2013)ADSCrossRefGoogle Scholar
  32. 32.
    D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, Dielectric gradient metasurface optical elements, Science 345(6194), 298 (2014)ADSCrossRefGoogle Scholar
  33. 33.
    R. Cregan, B. Mangan, J. Knight, T. Birks, P. S. J. Russell, P. Roberts, and D. Allan, Single-mode photonic band gap guidance of light in air, Science 285(5433), 1537 (1999)CrossRefGoogle Scholar
  34. 34.
    G. Wiederhecker, C. M. B. Cordeiro, F. Couny, F. Benabid, S. Maier, J. Knight, C. Cruz, and H. Fragnito, Field enhancement within an optical fibre with a subwavelength air core, Nat. Photonics 1(2), 115 (2007)ADSCrossRefGoogle Scholar
  35. 35.
    H. Altug, D. Englund, and J. Vuckovic, Ultrafast photonic crystal nanocavity laser, Nat. Phys. 2(7), 484 (2006)CrossRefGoogle Scholar
  36. 36.
    V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, Guiding and confining light in void nanostructure, Opt. Lett. 29(11), 1209 (2004)ADSCrossRefGoogle Scholar
  37. 37.
    Q. Xu, V. R. Almeida, R. R. Panepucci, and M. Lipson, Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material, Opt. Lett. 29(14), 1626 (2004)ADSCrossRefGoogle Scholar
  38. 38.
    V. R. Almeida, Q. Xu, R. R. Panepucci, C. A. Barrios, and M. Lipson, Light guiding in low index materials using high-index-contrast waveguides, in: Materials Research Society Symposium Proceedings, Vol. 797, Cambridge University Press, 2003, pp W6–10Google Scholar
  39. 39.
    P. Müllner and R. Hainberger, Structural optimization of silicon-on-insulator slot waveguides, IEEE Photonics Technol. Lett. 18(24), 2557 (2006)ADSCrossRefGoogle Scholar
  40. 40.
    A. Turner, I. Karube, and G. S. Wilson, Biosensors: Fun-Damentals and Applications, Oxford University Press, 1987Google Scholar
  41. 41.
    S. P. Singh and N. Singh, Nonlinear effects in optical fibers: Origin, management and applications, Prog. Electromagnetics Res. 73, 249 (2007)CrossRefGoogle Scholar
  42. 42.
    H. Choi, M. Heuck, and D. Englund, Self-similar nanocavity design with ultrasmall mode volume for single-photon nonlinearities, Phys. Rev. Lett. 118(22), 223605 (2017)ADSCrossRefGoogle Scholar
  43. 43.
    S. Hu and S. M. Weiss, Design of photonic crystal cavities for extreme light concentration, ACS Photonics 3(9), 1647 (2016)CrossRefGoogle Scholar
  44. 44.
    J. N. Reddy, An Introduction to the Finite Element Method, New York: McGraw-Hill, 1993, Vol. 2, No. 2.2Google Scholar
  45. 45.
    B. Vohnsen and S. I. Bozhevolnyi, Characterization of near-field optical probes, Appl. Opt. 38(9), 1792 (1999)ADSCrossRefGoogle Scholar
  46. 46.
    Z. Guo, S. Park, J. Yoon, and I. Shin, Recent progress in the development of near-infrared fluorescent probes for bioimaging applications, Chem. Soc. Rev. 43(1), 16 (2014)CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Wen-Cheng Yue
    • 1
  • Pei-Jun Yao
    • 1
    Email author
  • Li-Xin Xu
    • 1
  • Hai Ming
    • 1
  1. 1.Department of Optics and Optical EngineeringUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations