Advertisement

Frontiers of Physics

, 13:136702 | Cite as

Polarons in alkaline-earth-like atoms with multiple background Fermi surfaces

  • Jin-Ge Chen
  • Yue-Ran Shi
  • Xiang ZhangEmail author
  • Wei ZhangEmail author
Research Article
  • 15 Downloads

Abstract

We study the impurity problem in a Fermi gas of 173Yb atoms near an orbital Feshbach resonance (OFR), where a single moving particle in the 3P0 state interacts with two background Fermi seas of particles in different nuclear states of the ground 1S0 manifold. By employing wave function ansatz to molecule and polaron states, we investigate various properties of the molecule, the attractive polaron, and the repulsive polaron states. In comparison to the case where only one Fermi sea is populated, we find that the presence of an additional Fermi sea acts as an energy shift between the two channels of the OFR. In addition, quantum fluctuations near the Fermi level can also induce sizable effects to various properties of the attractive and repulsive polarons.

Keywords

Fermi gas alkaline-earth atoms orbital Feshbach resonance polaron 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11434011, 11522436, 11704408, and 11774425), and the Research Funds of Renmin University of China (Grant No. 16XNLQ03). X. Z. acknowledges support from the National Postdoctoral Program for Innovative Talents (Grant No. BX201601908) and the China Postdoctoral Science Foundation (Grant No. 2017M620991).

References

  1. 1.
    R. Zhang, Y. Cheng, H. Zhai, and P. Zhang, Orbital Feshbach resonance in alkali-earth atoms, Phys. Rev. Lett. 115(13), 135301 (2015)ADSCrossRefGoogle Scholar
  2. 2.
    G. Pagano, M. Mancini, G. Cappellini, L. Livi, C. Sias, J. Catani, M. Inguscio, and L. Fallani, Strongly interacting gas of two-electron fermions at an orbital Feshbach resonance, Phys. Rev. Lett. 115(26), 265301 (2015)ADSCrossRefGoogle Scholar
  3. 3.
    M. Höfer, L. Riegger, F. Scazza, C. Hofrichter, D. R. Fernandes, M. M. Parish, J. Levinsen, I. Bloch, and S. Fölling, Observation of an orbital interaction-induced Feshbach resonance in Yb173, Phys. Rev. Lett. 115(26), 265302 (2015)ADSCrossRefGoogle Scholar
  4. 4.
    Y. Cheng, R. Zhang, and P. Zhang, Orbital Feshbach resonances with a small energy gap between open and closed channels, Phys. Rev. A 93(4), 042708 (2016)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    T.-S. Deng, W. Zhang, and W. Yi, Tuning Feshbach resonances in cold atomic gases with interchannel coupling, Phys. Rev. A 96, 050701(R) (2017)ADSCrossRefGoogle Scholar
  6. 6.
    M. Iskin, Two-band superfluidity and intrinsic Josephson effect in alkaline-earth-metal Fermi gases across an orbital Feshbach resonance, Phys. Rev. A 94, 011604(R) (2016)ADSCrossRefGoogle Scholar
  7. 7.
    M. Iskin, Trapped Yb173 Fermi gas across an orbital Feshbach resonance, Phys. Rev. A 95(1), 013618 (2017)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    J. Xu, R. Zhang, Y. Cheng, P. Zhang, R. Qi, and H. Zhai, Reaching a Fermi-superfluid state near an orbital Feshbach resonance, Phys. Rev. A 94(3), 033609 (2016)ADSCrossRefGoogle Scholar
  9. 9.
    L. He, J. Wang, S. G. Peng, X. J. Liu, and H. Hu, Strongly correlated Fermi superfluid near an orbital Feshbach resonance: Stability, equation of state, and Leggett mode, Phys. Rev. A 94(4), 043624 (2016)Google Scholar
  10. 10.
    Y.-C. Zhang, S. Ding, and S. Zhang, Collective modes in a two-band superfluid of ultracold alkaline-earth-metal atoms close to an orbital Feshbach resonance, Phys. Rev. A 95, 041603(R) (2017)ADSCrossRefGoogle Scholar
  11. 11.
    S. Wang, J. S. Pan, X. Cui, W. Zhang, and W. Yi, Topological Fulde-Ferrell states in alkaline-earth-metallike atoms near an orbital Feshbach resonance, Phys. Rev. A 95(4), 043634 (2017)ADSCrossRefGoogle Scholar
  12. 12.
    Y. Cheng, R. Zhang, and P. Zhang, Quantum defect theory for the orbital Feshbach resonance, Phys. Rev. A 95(1), 013624 (2017)ADSCrossRefGoogle Scholar
  13. 13.
    J. G. Chen, T. S. Deng, W. Yi, and W. Zhang, Polarons and molecules in a Fermi gas with orbital Feshbach resonance, Phys. Rev. A 94(5), 053627 (2016)ADSCrossRefGoogle Scholar
  14. 14.
    J. Xu and R. Qi, Polaronic and dressed molecular states in orbital Feshbach resonances, arXiv: 1710.00785 (2017)Google Scholar
  15. 15.
    T. S. Deng, Z. C. Lu, Y. R. Shi, J. G. Chen, W. Zhang, and W. Yi, Repulsive polarons in alkaline-earth-metallike atoms across an orbital Feshbach resonance, Phys. Rev. A 97(1), 013635 (2018)ADSCrossRefGoogle Scholar
  16. 16.
    F. Chevy, Universal phase diagram of a strongly interacting Fermi gas with unbalanced spin populations, Phys. Rev. A 74(6), 063628 (2006)ADSCrossRefGoogle Scholar
  17. 17.
    R. Combescot, A. Recati, C. Lobo, and F. Chevy, Normal state of highly polarized Fermi gases: Simple manybody approaches, Phys. Rev. Lett. 98(18), 180402 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    M. Punk, P. T. Dumitrescu, and W. Zwerger, Polaronto-molecule transition in a strongly imbalanced Fermi gas, Phys. Rev. A 80(5), 053605 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    S. Zöllner, G. M. Bruun, and C. J. Pethick, Polarons and molecules in a two-dimensional Fermi gas, Phys. Rev. A 83, 021603(R) (2011)ADSCrossRefGoogle Scholar
  20. 20.
    M. Klawunn and A. Recati, Fermi polaron in two dimensions: Importance of the two-body bound state, Phys. Rev. A 84(3), 033607 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    M. M. Parish, Polaron-molecule transitions in a twodimensional Fermi gas, Phys. Rev. A 83, 051603(R) (2011)ADSCrossRefGoogle Scholar
  22. 22.
    R. Schmidt, and T. Enss, Excitation spectra and RF response near the polaron-to-molecule transition from the functional renormalization group, Phys. Rev. A 83(6), 063620 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    X. W. Guan, Polaron, molecule and pairing in onedimensional spin-1/2 Fermi gas with an attractive deltafunction interaction, Front. Phys. 7(1), 8 (2012)Google Scholar
  24. 24.
    C. Trefzger, and Y. Castin, Impurity in a Fermi sea on a narrow Feshbach resonance: A variational study of the polaronic and dimeronic branches, Phys. Rev. A 85(5), 053612 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    M. Koschorreck, D. Pertot, E. Vogt, B. Fröhlich, M. Feld, and M. Köhl, Attractive and repulsive Fermi polarons in two dimensions, Nature 485(7400), 619 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    P. Massignan, M. Zaccanti, and G. Bruun, Polarons, dressed molecules and itinerant ferromagnetism in ultracold Fermi gases, Rep. Prog. Phys. 77(3), 034401 (2014)MathSciNetGoogle Scholar
  27. 27.
    R. Schmidt, M. Knap, D. A. Ivanov, J. S. You, M. Cetina, and E. Demler, Universal many-body response of heavy impurities coupled to a Fermi sea: A review of recent progress, Rep. Prog. Phys. 81(2), 024401 (2018)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    P. Massignan and G. M. Bruun, Repulsive polarons and itinerant ferromagnetism in strongly polarized Fermi gases, Eur. Phys. J. D 65(1-2), 83 (2011)ADSCrossRefGoogle Scholar
  29. 29.
    P. Massignan, Z. Yu, and G. M. Bruun, Itinerant ferromagnetism in a polarized two-component Fermi gas, Phys. Rev. Lett. 110(23), 230401 (2013)ADSCrossRefGoogle Scholar
  30. 30.
    C. Kohstall, M. Zaccanti, M. Jag, A. Trenkwalder, P. Massignan, G. M. Bruun, F. Schreck, and R. Grimm, Metastability and coherence of repulsive polarons in a strongly interacting Fermi mixture, Nature 485(7400), 615 (2012)ADSCrossRefGoogle Scholar
  31. 31.
    X. Cui and H. Zhai, Stability of a fully magnetized ferromagnetic state in repulsively interacting ultracold Fermi gases, Phys. Rev. A 81, 041602(R) (2010)ADSCrossRefGoogle Scholar
  32. 32.
    S. Pilati, G. Bertaina, S. Giorgini, and M. Troyer, Itinerant ferromagnetism of a repulsive atomic Fermi gas: A quantum Monte Carlo study, Phys. Rev. Lett. 105(3), 030405 (2010)ADSCrossRefGoogle Scholar
  33. 33.
    M. Cetina, M. Jag, R. S. Lous, I. Fritsche, J. T. M. Waldraven, R. Grimm, J. Levinsen, M. M. Parish, R. Schmidt, M. Knap, and E. Demler, Ultrafast manybody interferometry of impurities coupled to a Fermi sea, Science 354(6308), 96 (2016)ADSCrossRefGoogle Scholar
  34. 34.
    G. Valtolina, F. Scazza, A. Amico, A. Burchianti, A. Recati, T. Enss, M. Inguscio, M. Zaccanti, and G. Roati, Exploring the ferromagnetic behaviour of a repulsive Fermi gas through spin dynamics, Nat. Phys. 13(7), 704 (2017)CrossRefGoogle Scholar
  35. 35.
    S. Mondal, D. Inotani, and Y. Ohashi, Closed-channel contribution in the BCS-BEC crossover regime of an ultracold Fermi gas with an orbital Feshbach resonance, arXiv: 1709.00154v1 (2017)Google Scholar
  36. 36.
    C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, Feshbach resonances in ultracold gases, Rev. Mod. Phys. 82(2), 1225 (2010)ADSCrossRefGoogle Scholar
  37. 37.
    F. Scazza, G. Valtolina, P. Massignan, A. Recati, A. Amico, A. Burchianti, C. Fort, M. Inguscio, M. Zaccanti, and G. Roati, Repulsive Fermi polarons in a resonant mixture of ultracold Li6 atoms, Phys. Rev. Lett. 118(8), 083602 (2017)ADSCrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsRenmin University of ChinaBeijingChina
  2. 2.Beijing Key Laboratory of Opto-electronic Functional Materials and Micro-nano DevicesRenmin University of ChinaBeijingChina

Personalised recommendations