Frontiers of Physics

, 13:137105 | Cite as

Tunable electronic structure and magnetic coupling in strained two-dimensional semiconductor MnPSe3

  • Qi Pei
  • Xiao-Cha Wang
  • Ji-Jun Zou
  • Wen-Bo MiEmail author
Research Article


The electronic structures and magnetic properties of strained monolayer MnPSe3 are investigated systematically via first-principles calculations. It is found that the magnetic ground state of monolayer MnPSe3 can be significantly affected by biaxial strain engineering, while the semiconducting characteristics are well-preserved. Owing to the sensitivity of the magnetic coupling towards structural deformation, a biaxial tensile strain of approximately 13% can lead to an antiferromagnetic (AFM)- ferromagnetic (FM) transition. The strain-dependent magnetic stability is mainly attributed to the competition of the direct AFM interaction and indirect FM superexchange interaction between the two nearest-neighbor Mn atoms. In addition, we find that FM MnPSe3 is an intrinsic half semiconductor with large spin exchange splitting in the conduction bands, which is crucial for the spin-polarized carrier injection and detection. The sensitive interdependence among the external stimuli, electronic structure, and magnetic coupling makes monolayer MnPSe3 a promising candidate for spintronics.


two-dimensional semiconductor MnPSe3 strain engineering electronic structure magnetic coupling 



This work was supported by the National Natural Science Foundation of China (Grant Nos. 51671142, U1632152, and 51661145026) and the Key Project of Natural Science Foundation of Tianjin City (Grant No. 16JCZDJC37300).


  1. 1.
    K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306(5696), 666 (2004)ADSCrossRefGoogle Scholar
  2. 2.
    K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene, Nature 438(7065), 197 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Experimental observation of the quantum Hall effect and Berry’s phase in graphene, Nature 438(7065), 201 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    A. K. Geim and K. S. Novoselov, The rise of graphene, Nat. Mater. 6(3), 183 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    F. Banhart, J. Kotakoski, and A. V. Krasheninnikov, Structural defects in graphene, ACS Nano 5(1), 26 (2011)CrossRefGoogle Scholar
  6. 6.
    H. Pan, J. B. Yi, L. Shen, R. Q. Wu, J. H. Yang, J. Y. Lin, Y. P. Feng, J. Ding, L. H. Van, and J. H. Yin, Room-temperature ferromagnetism in carbondoped ZnO, Phys. Rev. Lett. 99(12), 127201 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    C. Cao, M. Wu, J. Jiang, and H. P. Cheng, Transition metal adatom and dimer adsorbed on graphene: Induced magnetization and electronic structures, Phys. Rev. B 81(20), 205424 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    M. Naguib, V. N. Mochalin, M. W. Barsoum, and Y. Gogotsi, MXenes: A new family of two-dimensional materials, Adv. Mater. 26(7), 992 (2014)CrossRefGoogle Scholar
  9. 9.
    S. Lebègue, T. Björkman, M. Klintenberg, R. M. Nieminen, and O. Eriksson, Two-dimensional materials from data filtering and ab initio calculations, Phys. Rev. X 3(3), 031002 (2013)Google Scholar
  10. 10.
    X. Li and J. Yang, CrXTe3 (X=Si, Ge) nanosheets: Two dimensional intrinsic ferromagnetic semiconductors, J. Mater. Chem. C Mater. Opt. Electron. Devices 2(34), 7071 (2014)CrossRefGoogle Scholar
  11. 11.
    M. W. Lin, H. L. Zhuang, J. Yan, T. Z. Ward, A. A. Puretzky, C. M. Rouleau, Z. Gai, L. Liang, V. Meunier, B. G. Sumpter, P. Ganesh, P. R. C. Kent, D. B. Geohegan, D. G. Mandrus, and K. Xiao, Ultrathin nanosheets of CrSiTe3: A semiconducting two-dimensional ferromagnetic material, J. Mater. Chem. C 4(2), 315 (2016)CrossRefGoogle Scholar
  12. 12.
    Y. Ma, Y. Dai, M. Guo, C. Niu, Y. Zhu, and B. Huang, Evidence of the existence of magnetism in pristine VX2 monolayers (X = S, Se) and their strain-induced tunable magnetic properties, ACS Nano 6(2), 1695 (2012)CrossRefGoogle Scholar
  13. 13.
    W. B. Zhang, Q. Qu, P. Zhu, and C. H. Lam, Robust intrinsic ferromagnetism and half semiconductivity in stable two-dimensional single-layer chromium trihalides, J. Mater. Chem. C 3(48), 12457 (2015)CrossRefGoogle Scholar
  14. 14.
    X. X. Li, X. J. Wu, and J. L. Yang, Half-metallicity in MnPSe3 exfoliated nanosheet with carrier doping, J. Am. Chem. Soc. 136(31), 11065 (2014)CrossRefGoogle Scholar
  15. 15.
    X. Zhang, X. Zhao, D. Wu, Y. Jing, and Z. Zhou, MnPSe3 monolayer: a promising 2D visible-light photohydrolytic catalyst with high carrier mobility, Adv. Sci. 3(10), 1600062 (2016)CrossRefGoogle Scholar
  16. 16.
    B. L. Chittari, Y. Park, D. Lee, M. Han, A. H. Mac-Donald, E. Hwang, and J. Jung, Electronic and magnetic properties of single-layer MPX3 metal phosphorous trichalcogenides, Phys. Rev. B 94(18), 184428 (2016)ADSCrossRefGoogle Scholar
  17. 17.
    X. Li, T. Cao, Q. Niu, J. Shi, and J. Feng, Coupling the valley degree of freedom to antiferromagnetic order, Proc. Natl. Acad. Sci. USA 110(10), 3738 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    Q. Pei, Y. Song, X. Wang, J. Zou, and W. Mi, Superior electronic structure in two-dimensional MnPSe3/MoS2 van der Waals heterostructures, Sci. Rep. 7(1), 9504 (2017)ADSCrossRefGoogle Scholar
  19. 19.
    K. F. Mak, C. H. Lui, J. Shan, and T. F. Heinz, Observation of an electric-field-induced band gap in bilayer graphene by infrared spectroscopy, Phys. Rev. Lett. 102(25), 256405 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    Y. Zhou, Z. Wang, P. Yang, X. Zu, L. Yang, X. Sun, and F. Gao, Tensile strain switched ferromagnetism in layered NbS2 and NbSe2, ACS Nano 6(11), 9727 (2012)Google Scholar
  21. 21.
    Y. C. Cheng, Q. Y. Zhang, and U. Schwingenschlögl, Valley polarization in magnetically doped single-layer transition-metal dichalcogenides, Phys. Rev. B 89(15), 155429 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    K. Sawada, F. Ishii, M. Saito, S. Okada, and T. Kawai, Phase control of graphene nanoribbon by carrier doping: Appearance of noncollinear magnetism, Nano Lett. 9(1), 269 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    F. Li and Z. Chen, Tuning electronic and magnetic properties of MoO3 sheets by cutting, hydrogenation, and external strain: A computational investigation, Nanoscale 5(12), 5321 (2013)Google Scholar
  24. 24.
    H. H. Pérez-Garza, E. W. Kievit, G. F. Schneider, and U. Staufer, Highly strained graphene samples of varying thickness and comparison of their behavior, Nanotechnology 25(46), 465708 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    S. Bertolazzi, J. Brivio, and A. Kis, Stretching and breaking of ultrathin MoS2, ACS Nano 5(12), 9703 (2011)Google Scholar
  26. 26.
    X. Chen, J. Qi, and D. Shi, Strain-engineering of magnetic coupling in two-dimensional magnetic semiconductor CrSiTe3: competition of direct exchange interaction and superexchange interaction, Phys. Lett. A 379(1–2), 60 (2015)ADSCrossRefGoogle Scholar
  27. 27.
    Y. Ma, Y. Dai, M. Guo, C. Niu, L. Yu, and B. Huang, Strain-induced magnetic transitions in half-fluorinated single layers of BN, GaN and graphene, Nanoscale 3(5), 2301 (2011)CrossRefGoogle Scholar
  28. 28.
    L. Kou, C. Tang, W. Guo, and C. Chen, Tunable magnetism in strained graphene with topological line defect, ACS Nano 5(2), 1012 (2011)CrossRefGoogle Scholar
  29. 29.
    F. Ding, H. Ji, Y. Chen, A. Herklotz, K. Dörr, Y. Mei, A. Rastelli, and O. G. Schmidt, Stretchable graphene: A close look at fundamental parameters through biaxial straining, Nano Lett. 10(9), 3453 (2010)ADSCrossRefGoogle Scholar
  30. 30.
    G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)ADSCrossRefGoogle Scholar
  31. 31.
    G. Kresse and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6(1), 15 (1996)CrossRefGoogle Scholar
  32. 32.
    J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)ADSCrossRefGoogle Scholar
  33. 33.
    S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study, Phys. Rev. B 57(3), 1505 (1998)ADSCrossRefGoogle Scholar
  34. 34.
    S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction, J. Comput. Chem. 27(15), 1787 (2006)CrossRefGoogle Scholar
  35. 35.
    V. Grasso and L. Silipigni, Optical absorption and reflectivity study of the layered MnPSe3 seleniophosphate, J. Opt. Soc. Am. B 16(1), 132 (1999)ADSCrossRefGoogle Scholar
  36. 36.
    A. Wiedenmann, J. Rossat-Mignod, A. Louisy, R. Brec, and J. Rouxel, Neutron diffraction study of the layered compounds MnPSe3 and FePSe3, Solid State Commun. 40(12), 1067 (1981)ADSCrossRefGoogle Scholar
  37. 37.
    T. Zhu and J. Li, Ultra-strength materials, Prog. Mater. Sci. 55(7), 710 (2010)CrossRefGoogle Scholar
  38. 38.
    A. R. Wildes, B. Roessli, B. Lebech, and K. W. Godfrey, Spin waves and the critical behaviour of the magnetization in., J. Phys.: Condens. Matter 10(28), 6417 (1998)ADSGoogle Scholar
  39. 39.
    K. Okuda, K. Kurosawa, S. Saito, M. Honda, Z. Yu, and M. Date, Magnetic properties of layered compound MnPS3, J. Phys. Soc. Jpn. 55(12), 4456 (1986)ADSCrossRefGoogle Scholar
  40. 40.
    N. Sivadas, M. W. Daniels, R. H. Swendsen, S. Okamoto, and D. Xiao, Magnetic ground state of semiconducting transition-metal trichalcogenide monolayers, Phys. Rev. B 91(23), 235425 (2015)ADSCrossRefGoogle Scholar
  41. 41.
    J. B. Goodenough, Theory of the role of covalence in the perovskite-type manganites [La, M(II)]MnO3, Phys. Rev. 100(2), 564 (1955)ADSCrossRefGoogle Scholar
  42. 42.
    J. Kanamori, Crystal distortion in magnetic compounds, J. Appl. Phys. 31(5), S14 (1960)ADSCrossRefGoogle Scholar
  43. 43.
    M. A. Subramanian, A. P. Ramirez, and W. J. Marshall, Structural tuning of ferromagnetism in a 3D cuprate perovskite, Phys. Rev. Lett. 82(7), 1558 (1999)ADSCrossRefGoogle Scholar
  44. 44.
    W. B. Zhang, Q. Qu, P. Zhu, and C. H. Lam, Robust intrinsic ferromagnetism and half semiconductivity in stable two-dimensional single-layer chromium trihalides, J. Mater. Chem. C 3(48), 12457 (2015)CrossRefGoogle Scholar
  45. 45.
    M. Joe, H. Lee, M. M. Alyörük, J. Lee, S. Y. Kim, C. Lee, and J. H. Lee, A comprehensive study of piezomagnetic response in CrPS4 monolayer: Mechanical, electronic properties and magnetic ordering under strains, J. Phys.: Condens. Matter 29(40), 405801 (2017)Google Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparation Technology, School of ScienceTianjin UniversityTianjinChina
  2. 2.School of Electrical and Electronic EngineeringTianjin University of TechnologyTianjinChina
  3. 3.Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and TechnologyTianjin UniversityTianjinChina

Personalised recommendations