Advertisement

Frontiers of Physics

, 13:136106 | Cite as

Novel single-walled carbon nanotubes periodically embedded with four- and eight-membered rings

  • Xiao-Ning Wang
  • Jun-Zhe LuEmail author
  • Heng-Jiang ZhuEmail author
  • Fang-Fang Li
  • Miao-Miao Ma
  • Gui-Ping Tan
Research Article
  • 29 Downloads

Abstract

Based on experimental results, we obtain five types of single-walled carbon nanotube (SWNT) clusters with different chirality indices and diameters using density functional theory (DFT). We then obtain the corresponding SWNTs by using periodic boundary conditions. Studies of the stability and electronic properties show that the stability of the novel SWNTs is independent of the chirality index and relates only to the tube diameter; larger diameters correspond to more stable SWNTs. The electronic properties all show metallic characteristics independent of the chirality indices and tube diameters, thereby promoting the application of metallic-type SWNTs.

Keywords

four- and eight-membered rings novel SWNTs stability electronic properties 

Notes

Acknowledgements

The authors acknowledge the financial support from the National Natural Science Foundation of China (Grant No. 11464044), the Foundation of Key Laboratory of Mineral Luminescent Material and Microstructure of Xinjiang (Project No. KWFG1701), and the “13th Five-Year” Plan for Key Discipline Physics Bidding Project, Xinjiang Normal University.

References

  1. 1.
    S. I. Yengejeh, S. A. Kazemi, and A. Öchsner, Advances in mechanical analysis of structurally and atomically modified carbon nanotubes and degenerated nanostructures: A review, Compos. Part B Eng. 86, 95 (2016)CrossRefGoogle Scholar
  2. 2.
    Y. Cao, S. Cong, X. Cao, F. Wu, Q. Liu, M. R. Amer, and C. Zhou, Review of electronics based on singlewalled carbon nanotubes, Top. Curr. Chem. 375(5), 75 (2017)CrossRefGoogle Scholar
  3. 3.
    F. Yang, X. Wang, D. Zhang, J. Yang, D. Luo, Z. Xu, J. Wei, J. Q. Wang, Z. Xu, F. Peng, X. Li, R. Li, Y. Li, M. Li, X. Bai, F. Ding, and Y. Li, Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts, Nature 510(7506), 522 (2014)ADSCrossRefGoogle Scholar
  4. 4.
    Y. Tang, J. Lu, D. Liu, X. Yan, C. Yao, and H. Zhu, Structural derivative and electronic property of armchair carbon nanotubes from carbon clusters, Journal of Nanomaterials 2017 (2017)Google Scholar
  5. 5.
    J. Liu, J. Lu, X. Lin, Y. Tang, Y. Liu, T. Wang, and H. Zhu, The electronic properties of chiral carbon nanotubes, Comput. Mater. Sci. 129, 290 (2017)CrossRefGoogle Scholar
  6. 6.
    Y. N. Liu, J. Z. Lu, H. J. Zhu, Y. C. Tang, X. Lin, J. Liu, and T. Wang, Derivative and electronic properties of zigzag carbon nanotubes, Acta Physica Sinica 66(9), 093601 (2017)Google Scholar
  7. 7.
    S. Liu and X. Guo, Functional single-walled carbon nanotube-based molecular devices, Acta Chimi. Sin. 71(04), 478 (2013)CrossRefGoogle Scholar
  8. 8.
    I. V. Zaporotskova, N. P. Boroznina, Y. N. Parkhomenko, and L. V. Kozhitov, Carbon nanotubes: Sensor properties, a review, Modern Electronic Materials 2(4), 95 (2016)CrossRefGoogle Scholar
  9. 9.
    M. Sheikhpour, A. Golbabaie, and A. Kasaeian, Carbon nanotubes: A review of novel strategies for cancer diagnosis and treatment, Mater. Sci. Eng. C 76(November), 1289 (2017)CrossRefGoogle Scholar
  10. 10.
    M. V. Chernysheva, E. A. Kiseleva, N. I. Verbitskii, A. A. Eliseev, A. V. Lukashin, Y. D. Tretyakov, S. V. Savilov, N. A. Kiselev, O. M. Zhigalina, A. S. Kumskov, A. V. Krestinin, and J. L. Hutchison, The electronic properties of SWNTs intercalated by electron acceptors, Physica E 40(7), 2283 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    T. Tanaka, H. Jin, Y. Miyata, and H. Kataura, Highyield separation of metallic and semiconducting singlewall carbon nanotubes by agarose gel electrophoresis, Appl. Phys. Express 1(11), 1140011 (2008)Google Scholar
  12. 12.
    F. Zhang, P. X. Hou, C. Liu, B. W. Wang, H. Jiang, M. L. Chen, D. M. Sun, J. C. Li, H. T. Cong, E. I. Kauppinen, and H. M. Cheng, Growth of semiconducting single-wall carbon nanotubes with a narrow bandgap distribution, Nat. Commun. 7, 1 (2016)ADSGoogle Scholar
  13. 13.
    I. Yahya, F. Bonaccorso, S. K. Clowes, A. C. Ferrari, and S. R. P. Silva, Temperature dependent separation of metallic and semiconducting carbon nanotubes using gel agarose chromatography, Carbon 93, 574 (2015)CrossRefGoogle Scholar
  14. 14.
    H. Liu, Y. Feng, T. Tanaka, Y. Urabe, and H. Kataura, Diameter-selective metal/semiconductor separation of single-wall carbon nanotubes by agarose gel, J. Phys. Chem. C 114(20), 9270 (2010)CrossRefGoogle Scholar
  15. 15.
    F. Yang, X. Wang, D. Zhang, K. Qi, J. Yang, Z. Xu, M. Li, X. Zhao, X. Bai, and Y. Li, Growing zigzag (16; 0) carbon nanotubes with structure-defined catalysts, J. Am. Chem. Soc. 137(27), 8688 (2015)CrossRefGoogle Scholar
  16. 16.
    F. Yang, X. Wang, M. Li, X. Liu, X. Zhao, D. Zhang, Y. Zhang, J. Yang, and Y. Li, Templated synthesis of single-walled carbon nanotubes with specific structure, Acc. Chem. Res. 49(4), 606 (2016)CrossRefGoogle Scholar
  17. 17.
    H. Terrones, M. Terrones, E. Hernández, N. Grobert, J. C. Charlier, and P. M. Ajayan, New metallic allotropes of planar and tubular carbon, Phys. Rev. Lett. 84(8), 1716 (2000)ADSCrossRefGoogle Scholar
  18. 18.
    L. P. Biró, G. I. Márk, Z. E. Horváth, K. Kertész, J. Gyulai, J. B. Nagy, and P. Lambin, Carbon nanoarchitectures containing non-hexagonal rings: “necklaces of pearls, Carbon 42(12–13), 2561 (2004)CrossRefGoogle Scholar
  19. 19.
    S. Zhang, J. Zhou, Q. Wang, X. Chen, Y. Kawazoe, and P. Jena, Penta-graphene: A new carbon allotrope, Proc. Natl. Acad. Sci. USA 112(8), 2372 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    C. Liu and H. M. Cheng, Controlled growth of semiconducting and metallic single-wall carbon nanotubes, J. Am. Chem. Soc. 138(21), 6690 (2016)CrossRefGoogle Scholar
  21. 21.
    G. Algara-Siller, A. Santana, R. Onions, M. Suyetin, J. Biskupek, E. Bichoutskaia, and U. Kaiser, Electronbeam engineering of single-walled carbon nanotubes from bilayer graphene, Carbon 65, 80 (2013)CrossRefGoogle Scholar
  22. 22.
    T. Xu, Y. Zhou, X. Tan, K. Yin, L. He, F. Banhart, and L. Sun, Creating the smallest BN nanotube from bilayer H-BN, Adv. Funct. Mater. 27(19), 1603897 (2017)CrossRefGoogle Scholar
  23. 23.
    M. Liu, M. Liu, L. She, Z. Zha, J. Pan, S. Li, T. Li, Y. He, Z. Cai, J. Wang, Y. Zheng, X. Qiu, and D. Zhong, Graphene-like nanoribbons periodically embedded with four-and eight-membered rings, Nat. Commun. 8, 1 (2017)ADSCrossRefGoogle Scholar
  24. 24.
    Y. L. Wang, K. H. Su, and J. P. Zhang, Studying of B, N, S, Si and P Doped (5,5) carbon nanotubes by the density functional theory, Adv. Mat. Res. 463–464, 1488 (2012)Google Scholar
  25. 25.
    C. Garau, A. Frontera, D. Quiñonero, A. Costa, P. Ballester, and P. M. Deyà, Structural and energetic features of single-walled carbon nanotube junctions: A theoretical ab initio study, Chem. Phys. 303(3), 265 (2004)CrossRefGoogle Scholar
  26. 26.
    J. Bai, X. C. Zeng, H. Tanaka, and J. Y. Zeng, Metallic single-walled silicon nanotubes, Proc. Natl. Acad. Sci. USA 101(9), 2664 (2004)ADSCrossRefGoogle Scholar
  27. 27.
    L. Guo, X. Zheng, C. Liu, W. Zhou, and Z. Zeng, An ab initio study of cluster-assembled hydrogenated silicon nanotubes, Comput. Theor. Chem. 982, 17 (2012)CrossRefGoogle Scholar
  28. 28.
    M. S. Alam, F. Muttaqien, A. Setiadi, and M. Saito, First-principles calculations of hydrogen monomers and dimers adsorbed in graphene and carbon nanotubes, J. Phys. Soc. Jpn. 82(4), 1 (2013)Google Scholar
  29. 29.
    L. Qi, J. Y. Huang, J. Feng, and J. Li, In situ observations of the nucleation and growth of atomically sharp graphene bilayer edges, Carbon 48(8), 2354 (2010)CrossRefGoogle Scholar
  30. 30.
    J. Y. Huang, F. Ding, B. I. Yakobson, P. Lu, L. Qi, and J. Li, In situ observation of graphene sublimation and multi-layer edge reconstructions, Proc. Natl. Acad. Sci. USA 106(25), 10103 (2009)ADSCrossRefGoogle Scholar
  31. 31.
    D. W. Boukhvalov and M. I. Katsnelson, Chemical functionalization of graphene, J. Phys.: Condens. Matter 21(34), 344205 (2009)Google Scholar
  32. 32.
    A. R. Botello-Méndez, E. Cruz-Silva, F. López-Urías, B. G. Sumpter, V. Meunier, M. Terrones, and H. Terrones, Spin polarized conductance in hybrid graphene nanoribbons using 5–7 defects, ACS Nano 3(11), 3606 (2009)CrossRefGoogle Scholar
  33. 33.
    Q. Q. Dai, Y. F. Zhu, and Q. Jiang, Electronic and magnetic engineering in zigzag graphene nanoribbons having a topological line defect at different positions with or without strain, J. Phys. Chem. C 117(9), 4791 (2013)CrossRefGoogle Scholar
  34. 34.
    X. Peng and R. Ahuja, Symmetry breaking induced bandgap in epitaxial graphene layers on SiC, Nano Lett. 8(12), 4464 (2008)ADSCrossRefGoogle Scholar
  35. 35.
    S. Reich, L. Li, and J. Robertson, Structure and formation energy of carbon nanotube caps, Phys. Rev. B 72(16), 1654231 (2005)CrossRefGoogle Scholar
  36. 36.
    S. Singh and A. H. Romero, Giant tunable rashba spin splitting in a two-dimensional BiSb monolayer and in BiSb/AlN heterostructures, Phys. Rev. B 95(16), 165444 (2017)ADSCrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Physics and Electronic EngineeringXinjiang Normal UniversityUrumqiChina
  2. 2.Key Laboratory of Mineral Luminescence Materials and Microstructures of Xinjiang Uygur Autonomous RegionUrumqiChina

Personalised recommendations