Advertisement

Frontiers of Physics

, 13:135202 | Cite as

Photon and positron generation by ultrahigh intensity laser interaction with electron beams

  • Muhammad Ali BakeEmail author
  • Aimierding AimidulaEmail author
  • Arkin Zakir
  • Nuriman Abdukerim
  • Abduleziz Ablat
Research Article
  • 34 Downloads

Abstract

This study investigates the generation of high energy photons and positrons using focused ultrahigh intensity femtosecond laser pulses on a relativistic electron beam with a set of two-dimensional particle-in-cell simulations. We consider circularly and linearly polarized, single and spatially separated double laser pulses. We model both 500 MeV and 1 GeV electron beams. Higher positron production is obtained using circularly polarized laser pulses. Using double pulses, the focusing effect of the ponderomotive force confines the electrons to a small volume, generating additional energetic photons and positrons. The positron spectral distributions are effectively modified by these variations. When the electron beam energy is doubled, the number of positrons increased, while the cutoff energy remained nearly constant.

Keywords

laser-electron beam interaction photon and positron generation QED effect 

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (NSFC) (Grant Nos. 11664039 and 11575150), and the Doctoral Fund of Xinjiang University (Grant Nos. BS150216 and BS150217). A. Ablat was supported by NSFC (Grant Nos. 61464010 and 61604126). The authors are particularly grateful to CFSA at the University of Warwick for allowing us to use the EPOCH.

References

  1. 1.
    E. Esarey, C. B. Schroeder, and W. P. Leemans, Physics of laser-driven plasma-based electron accelerators, Rev. Mod. Phys. 81(3), 1229 (2009)ADSCrossRefGoogle Scholar
  2. 2.
    S. M. Hooker, Developments in laser-driven plasma accelerators, Nat. Photon. 7(10), 775 (2013)ADSCrossRefGoogle Scholar
  3. 3.
    A. Macchi, M. Borghesi, and M. Passoni, Ion acceleration by superintense laser-plasma interaction, Rev. Mod. Phys. 85(2), 751 (2013)ADSCrossRefGoogle Scholar
  4. 4.
    H. Daido, M. Nishiuchi, and A. S. Pirozhkov, Review of laser-driven ion sources and their applications, Rep. Prog. Phys. 75(5), 056401 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    B. A. Remington, R. P. Drake, and D. D. Ryutov, Experimental astrophysics with high power lasers and Z pinches, Rev. Mod. Phys. 78(3), 755 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    G. A. Mourou, T. Tajima, and S. V. Bulanov, Optics in the relativistic regime, Rev. Mod. Phys. 78(2), 309 (2006)ADSCrossRefGoogle Scholar
  7. 7.
    E. L. I. Beamlines, www.eli-beams.euGoogle Scholar
  8. 8.
    F. Ehlotzky, K. Krajewska, and J. Z. Kaminski, Fundamental processes of quantum electrodynamics in laser fields of relativistic power, Rep. Prog. Phys. 72(4), 046401 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    A. Di Piazza, C. Müller, K. Z. Hatsagortsyan, and C. H. Keitel, Extremely high-intensity laser interactions with fundamental quantum systems, Rev. Mod. Phys. 84(3), 1177 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    S. Gales, D. L. Balabanski, F. Negoita, O. Tesileanu, C. A. Ur, D. Ursescu, and N. V. Zamfir, New frontiers in nuclear physics with high-power lasers and brilliant monochromatic gamma beams, Phys. Scr. 91(9), 093004 (2016)ADSCrossRefGoogle Scholar
  11. 11.
    E. Liang, Gamma-ray and pair creation using ultraintense lasers and astrophysical applications, High Energy Density Phys. 9(3), 425 (2013)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    P. Chen and G. Mourou, Accelerating plasma mirrors to investigate the black hole information loss paradox, Phys. Rev. Lett. 118(4), 045001 (2017)ADSCrossRefGoogle Scholar
  13. 13.
    A. A. Gonoskov, I. Gonoskov, C. Harvey, A. Ilderton, A. Kim, M. Marklund, G. Mourou, and A. Sergeev, Probing nonperturbative QED with optimally focused laser pulses, Phys. Rev. Lett. 111(6), 060404 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    M. Vranic, T. Grismayer, R. A. Fonseca, and L. O. Silva, Quantum radiation reaction in head-on laser-electron beam interaction, New J. Phys. 18(7), 073035 (2016)ADSCrossRefGoogle Scholar
  15. 15.
    T. G. Blackburn, C. P. Ridgers, J. G. Kirk, and A. R. Bell, Quantum radiation reaction in laser–electronbeam collisions, Phys. Rev. Lett. 112(1), 015001 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    I. V. Sokolov, N. M. Naumova, J. A. Nees, and G. A. Mourou, Pair creation in QED-strong pulsed laser fields interacting with electron beams, Phys. Rev. Lett. 105(19), 195005 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    A. R. Bell and J. G. Kirk, Possibility of prolific pair production with high-power lasers, Phys. Rev. Lett. 101(20), 200403 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    C. P. Ridgers, C. S. Brady, R. Duclous, J. G. Kirk, K. Bennett, T. D. Arber, and A. R. Bell, Dense electron-positron plasmas and bursts of gamma-rays from laser-generated quantum electrodynamic plasmas, Phys. Plasmas 20(5), 056701 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    C. P. Ridgers, C. S. Brady, R. Duclous, J. G. Kirk, K. Bennett, T. D. Arber, A. P. L. Robinson, and A. R. Bell, Dense electron-positron plasmas and ultraintense g rays from laser-irradiated solids, Phys. Rev. Lett. 108(16), 165006 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    J. R. Danielson, D. H. E. Dubin, R. G. Greaves, and C. M. Surko, Plasma and trap-based techniques for science with positrons, Rev. Mod. Phys. 87(1), 247 (2015)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    S. S. Bulanov, T. Zh. Esirkepov, A. G. R. Thomas, J. K. Koga, and S. V. Bulanov, Schwinger limit attainability with extreme power lasers, Phys. Rev. Lett. 105(22), 220407 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    M. Jirka, O. Klimo, S. V. Bulanov, T. Zh. Esirkepov, E. Gelfer, S. S. Bulanov, S. Weber, and G. Korn, Electron dynamics and g and e-e+ production by colliding laser pulses, Phys. Rev. E 93(2), 023207 (2016)ADSCrossRefGoogle Scholar
  23. 23.
    T. Grismayer, M. Vranic, J. L. Martins, R. A. Fonseca, and L. O. Silva, Seeded QED cascades in counterpropagating laser pulses, Phys. Rev. E 95(2), 023210 (2017)ADSCrossRefGoogle Scholar
  24. 24.
    S. Augustin and C. Müller, Interference effects in Bethe-Heitler pair creation in a bichromatic laser field, Phys. Rev. A 88(2), 022109 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    K. Krajewska and J. Z. Kami’nski, Breit-Wheeler process in intense short laser pulses, Phys. Rev. A 86(5), 052104 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    B. F. Shen and J. Meyer-ter-Vehn, Pair and g -photon production from a thin foil confined by two laser pulses, Phys. Rev. E 65(1), 016405 (2001)ADSCrossRefGoogle Scholar
  27. 27.
    H. Y. Hu, C. Müller, and C. H. Keitel, Complete QED theory of multiphoton trident pair production in strong laser fields, Phys. Rev. Lett. 105(8), 080401 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    A. Ilderton, Trident pair production in strong laser pulses, Phys. Rev. Lett. 106(2), 020404 (2011)ADSCrossRefGoogle Scholar
  29. 29.
    S. Tang, M. A. Bake, H. Y. Wang, and B. S. Xie, QED cascade induced by a high-energy γ photon in a strong laser field, Phys. Rev. A 89, 022105 (2014)ADSCrossRefGoogle Scholar
  30. 30.
    D. L. Burke, R. C. Field, G. Horton-Smith, J. E. Spencer, D. Walz, S. C. Berridge, W. M. Bugg, K. Shmakov, A. W. Weidemann, C. Bula, K. T. McDonald, E. J. Prebys, C. Bamber, S. J. Boege, T. Koffas, T. Kotseroglou, A. C. Melissinos, D. D. Meyerhofer, D. A. Reis, and W. Ragg, Positron production in multiphoton light-by-light scattering, Phys. Rev. Lett. 79(9), 1626 (1997)ADSCrossRefGoogle Scholar
  31. 31.
    C. Bamber, S. J. Boege, T. Koffas, T. Kotseroglou, A. C. Melissinos, D. D. Meyerhofer, D. A. Reis, W. Ragg, C. Bula, K. T. McDonald, E. J. Prebys, D. L. Burke, R. C. Field, G. Horton-Smith, J. E. Spencer, D. Walz, S. C. Berridge, W. M. Bugg, K. Shmakov, and A. W. Weidemann, Studies of nonlinear QED in collisions of 46.6 GeV electrons with intense laser pulses, Phys. Rev. D 60(9), 092004 (1999)ADSCrossRefGoogle Scholar
  32. 32.
    M. Amoretti, C. Amsler, G. Bonomi, A. Bouchta, P. Bowe, et al., Production and detection of cold antihydrogen atoms, Nature 419(6906), 456 (2002)ADSCrossRefGoogle Scholar
  33. 33.
    A. N. Timokhin, Time-dependent pair cascades in magnetospheres of neutron stars (I): Dynamics of the polar cap cascade with no particle supply from the neutron star surface, Mon. Not. R. Astron. Soc. 408(4), 2092 (2010)ADSCrossRefGoogle Scholar
  34. 34.
    T. D. Arber, K. Bennett, C. S. Brady, A. Lawrence-Douglas, M. G. Ramsay, N. J. Sircombe, P. Gillies, R. G. Evans, H. Schmitz, A. R. Bell, and C. P. Ridgers, Contemporary particle-in-cell approach to laser-plasma modelling, Plasma Phys. Contr. Fusion 57(11), 113001 (2015)ADSCrossRefGoogle Scholar
  35. 35.
    G. Mourou, B. Brocklesby, T. Tajima, and J. Limpert, The future is fibre accelerators, Nat. Photon. 7(4), 258 (2013)ADSCrossRefGoogle Scholar
  36. 36.
    M. L. Zhou, B. Liu, R. H. Hu, Y. R. Shou, C. Lin, H. Y. Lu, Y. R. Lu, Y. Q. Gu, W. J. Ma, and X. Q. Yan, Stable radiation pressure acceleration of ions by suppressing transverse Rayleigh-Taylor instability with multiple Gaussian pulses, Phys. Plasmas 23(8), 083109 (2016)ADSCrossRefGoogle Scholar
  37. 37.
    W. P. Leemans, A. J. Gonsalves, H. S. Mao, K. Nakamura, C. Benedetti, C. B. Schroeder, C. Tóth, J. Daniels, D. E. Mittelberger, S. S. Bulanov, J. L. Vay, C. G. R. Geddes, and E. Esarey, Multi-GeV electron beams from capillary-discharge-guided subpetawatt laser pulses in the self-trapping regime, Phys. Rev. Lett. 113(24), 245002 (2014)ADSCrossRefGoogle Scholar
  38. 38.
    X. M. Wang, R. Zgadzaj, N. Fazel, Z. Y. Li, S. A. Yi, et al., Quasi-monoenergetic laser-plasma acceleration of electrons to 2 GeV, Nat. Commun. 4, 1988 (2013)CrossRefGoogle Scholar
  39. 39.
    M. Mirzaie, S. Li, M. Zeng, N. A. M. Hafz, M. Chen, G. Y. Li, Q. J. Zhu, H. Liao, T. Sokollik, F. Liu, Y. Y. Ma, L. M. Chen, Z. M. Sheng, and J. Zhang, Demonstration of self-truncated ionization injection for GeV electron beams, Sci. Rep. 5(1), 14659 (2015)ADSCrossRefGoogle Scholar
  40. 40.
    S. Cipiccia, M. R. Islam, B. Ersfeld, R. P. Shanks, E. Brunetti, et al., Gamma-rays from harmonically resonant betatron oscillations in a plasma wake, Nat. Phys. 7(11), 867 (2011)CrossRefGoogle Scholar
  41. 41.
    N. Abdukerim, Z. L. Li, and B. S. Xie, Electronpositron pair production in the low-density approximation, Front. Phys. 10(4), 101202 (2015)CrossRefGoogle Scholar
  42. 42.
    Z. L. Li, D. Lu, and B. S. Xie, Dynamically assisted pair production for scalar QED by two fields, Front. Phys. 10(2), 101201 (2015)Google Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Physics Science and TechnologyXinjiang UniversityUrumqiChina

Personalised recommendations