Advertisement

Frontiers of Physics

, 13:138115 | Cite as

Interfacial charge transfer in WS2 monolayer/CsPbBr3 microplate heterostructure

  • Zhen-Zhong Yan
  • Zhao-Han Jiang
  • Jun-Peng LuEmail author
  • Zhen-Hua NiEmail author
Research Article
  • 74 Downloads
Part of the following topical collections:
  1. Graphene and other Two-Dimensional Materials

Abstract

Integration of heterogenous materials produces compelling physical phenomena and increased performance of optoelectronic devices. In this work, we integrate CsPbBr3 microplate with WS2 monolayer to investigate the interfacial carrier transfer mechanism in the heterojunction. The quenching of photoluminescence (PL) emission from CsPbBr3 and WS2 after heterostructure formation indicates efficient charge transfer in the junction. Low-temperature PL spectra reveal that the decreasing PL of WS2 arises from the vanishing of biexcitons. Photodetection based on the WS2/CsPbBr3 heterostructure is demonstrated. The higher performance from the junction further certifies the occurrence of charge transfer in the heterojunction.

Keywords

TMDs inorganic perovskite heterostructure charge transfer 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61774034, 11704068, and 61422503), the Open Research Fund of Key Laboratory of MEMS of Ministry of Education (SEU, China), and the Fundamental Research Funds for the Central Universities.

References

  1. 1.
    Editorial, Graphene is not alone, Nat. Nanotechnol. 7(11), 683 (2012)Google Scholar
  2. 2.
    Z. Hu, Z. Wu, C. Han, J. He, Z. Ni, and W. Chen, Twodimensional transition metal dichalcogenides: Interface and defect engineering, Chem. Soc. Rev. 47(9), 3100 (2018)CrossRefGoogle Scholar
  3. 3.
    Y. Lee, X. Zhang, W. Zhang, M. Chang, C. Lin, K. Chang, Y. Yu, J. T. Wang, C. Chang, L. Li, and T. Lin, Synthesis of large-area MoS2 atomic layers with chemical vapor deposition, Adv. Mater. 24(17), 2320 (2012)CrossRefGoogle Scholar
  4. 4.
    A. M. Jones, H. Yu, N. J. Ghimire, S. Wu, G. Aivazian, J. S. Ross, B. Zhao, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, Optical generation of excitonic valley coherence in monolayer WSe2, Nat. Nanotechnol. 8(9), 634 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    H. Zeng, J. Dai, W. Yao, D. Xiao, and X. Cui, Valley polarization in MoS2 monolayers by optical pumping, Nat. Nanotechnol. 7(8), 490 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    K. F. Mak, K. He, J. Shan, and T. F. Heinz, Control of valley polarization in monolayer MoS2 by optical helicity, Nat. Nanotechnol. 7(8), 494 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    T. Cao, G. Wang, W. Han, H. Ye, C. Zhu, J. Shi, Q. Niu, P. Tan, E. Wang, B. Liu, and J. Feng, Valleyselective circular dichroism of monolayer molybdenum disulphide, Nat. Commun. 3(1), 887 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    J. S. Ross, P. Klement, A. M. Jones, N. J. Ghimire, J. Yan, D. G. Mandrus, T. Taniguchi, K. Watanabe, K. Kitamura, W. Yao, D. H. Cobden, and X. Xu, Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p–n junctions, Nat. Nanotechnol. 9(4), 268 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    A. Pospischil, M. M. Furchi, and T. Mueller, Solarenergy conversion and light emission in an atomic monolayer p–n diode, Nat. Nanotechnol. 9(4), 257 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    W. Wang, R. Du, X. Guo, J. Jiang, W. Zhao, Z. Ni, X. Wang, Y. You, and Z. Ni, Interfacial amplification for graphene-based position-sensitive-detectors, Light Sci. Appl. 6(10), e17113 (2017)CrossRefGoogle Scholar
  11. 11.
    J. Lu, J. H. Lu, H. Liu, B. Liu, K. X. Chan, J. Lin, W. Chen, K. P. Loh, and C. H. Sow, Improved photoelectrical properties of MoS2 films after laser micromachining, ACS Nano 8(6), 6334 (2014)CrossRefGoogle Scholar
  12. 12.
    S. H. Yu, Y. Lee, S. K. Jang, J. Kang, J. Jeon, C. Lee, J. Y. Lee, H. Kim, E. Hwang, S. Lee, and J. H. Cho, Dyesensitized MoS2 photodetector with enhanced spectral photoresponse, ACS Nano 8(8), 8285 (2014)CrossRefGoogle Scholar
  13. 13.
    D. Kufer, I. Nikitskiy, T. Lasanta, G. Navickaite, F. H. L. Koppens, and G. Konstantatos, Hybrid 2D-0D MoS2-PbS quantum dot photodetectors, Adv. Mater. 27(1), 176 (2015)CrossRefGoogle Scholar
  14. 14.
    D. Jariwala, V. K. Sangwan, C. C. Wu, P. L. Prabhumirashi, M. L. Geier, T. J. Marks, L. J. Lauhon, and M. C. Hersam, Gate-tunable carbon nanotube-MoS2 heterojunction p-n diode, Proc. Natl. Acad. Sci. USA 110(45), 18076 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    S. Yakunin, L. Protesescu, F. Krieg, M. I. Bodnarchuk, G. Nedelcu, M. Humer, G. De Luca, M. Fiebig, W. Heiss, and M. V. Kovalenko, Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites, Nat. Commun. 6(1) (2015)Google Scholar
  16. 16.
    V. K. Ravi, G. B. Markad, and A. Nag, Band edge energies and excitonic transition probabilities of colloidal CsPbX3 (X = Cl, Br, I) perovskite nanocrystals, ACS Energy Lett. 1(4), 665 (2016)CrossRefGoogle Scholar
  17. 17.
    X. Song, X. Liu, D. Yu, C. Huo, J. Ji, X. Li, S. Zhang, Y. Zou, G. Zhu, Y. Wang, M. Wu, A. Xie, and H. Zeng, Boosting two-dimensional MoS2/CsPbBr3 photodetectors via enhanced light absorbance and interfacial carrier separation, ACS Appl. Mater. Inter. 10(3), 2801 (2018)CrossRefGoogle Scholar
  18. 18.
    D. Kwak, D. Lim, H. Ra, P. Ramasamy, and J. Lee, High performance hybrid graphene–CsPbBr3-xIx perovskite nanocrystal photodetector, RSC Adv. 6(69), 65252 (2016)CrossRefGoogle Scholar
  19. 19.
    H. Li, X. Zheng, Y. Liu, Z. Zhang, and T. Jiang, Ultrafast interfacial energy transfer and interlayer excitons in the monolayer WS2/CsPbBr3 quantum dot heterostructure, Nanoscale 10(4), 1650 (2018)CrossRefGoogle Scholar
  20. 20.
    Y. Liu, H. Li, X. Zheng, X. Cheng, and T. Jiang, Giant photoluminescence enhancement in monolayer WS2 by energy transfer from CsPbBr3 quantum dots, Opt. Mater. Express 7(4), 1327 (2017)ADSCrossRefGoogle Scholar
  21. 21.
    H. W. Liu, J. P. Lu, H. M. Fan, C. H. Sow, S. H. Tang, and X. H. Zhang, Temperature and composition dependence of photoluminescence dynamics in CdSxSe1-x (0 ≤ x ≤ 1) nanobelts, J. Appl. Phys. 111(7), 073112 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, and M. V. Kovalenko, Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut, Nano Lett. 15(6), 3692 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    V. D. Innocenzo, G. Grancini, M. J. P. Alcocer, A. R. S. Kandada, S. D. Stranks, M. M. Lee, G. Lanzani, H. J. Snaith, and A. Petrozza, Excitons versus free charges in organo-lead tri-halide perovskites, Nat. Commun. 5, 3586 (2014)CrossRefGoogle Scholar
  24. 24.
    G. Moody, C. Kavir Dass, K. Hao, C. Chen, L. Li, A. Singh, K. Tran, G. Clark, X. Xu, G. Berghäuser, E. Malic, A. Knorr, and X. Li, Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides, Nat. Commun. 6(1), 8315 (2015)CrossRefGoogle Scholar
  25. 25.
    G. Grosso, J. Graves, A. T. Hammack, A. A. High, L. V. Butov, M. Hanson, and A. C. Gossard, Excitonic switches operating at around 100 K, Nat. Photonics 3(10), 577 (2009)ADSCrossRefGoogle Scholar
  26. 26.
    T. Byrnes, N. Y. Kim, and Y. Yamamoto, Exciton–polariton condensates, Nat. Phys. 10(11), 803 (2014)CrossRefGoogle Scholar
  27. 27.
    A. Berkdemir, H. R. Gutiérrez, A. R. Botello-Méndez, N. Perea-López, A. L. Elías, C. Chia, B. Wang, V. H. Crespi, F. López-Urías, J. Charlier, H. Terrones, and M. Terrones, Identification of individual and few layers of WS2 using Raman spectroscopy, Sci. Rep. 3(1), 1755 (2013)CrossRefGoogle Scholar
  28. 28.
    J. Lu, H. Liu, E. S. Tok, and C. Sow, Interactions between lasers and two-dimensional transition metal dichalcogenides, Chem. Soc. Rev. 45(9), 2494 (2016)CrossRefGoogle Scholar
  29. 29.
    X. Hong, J. Kim, S. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, and F. Wang, Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures, Nat. Nanotechnol. 9(9), 682 (2014)ADSCrossRefGoogle Scholar
  30. 30.
    G. Liu, W. Shan, Y. Yao, W. Yao, and D. Xiao, Threeband tight-binding model for monolayers of group-VIB transition metal dichalcogenides, Phys. Rev. B 88(8), 085433 (2013)ADSCrossRefGoogle Scholar
  31. 31.
    M. Kulbak, S. Gupta, N. Kedem, I. Levine, T. Bendikov, G. Hodes, and D. Cahen, Cesium enhances long-term stability of lead bromide perovskite-based solar cells, J. Phys. Chem. Lett. 7(1), 167 (2016)CrossRefGoogle Scholar
  32. 32.
    H. Liu, J. Lu, K. Ho, Z. Hu, Z. Dang, A. Carvalho, H. R. Tan, E. S. Tok, and C. H. Sow, Fluorescence concentric triangles: A case of chemical heterogeneity in WS2 atomic monolayer, Nano Lett. 16(9), 5559 (2016)ADSCrossRefGoogle Scholar
  33. 33.
    M. S. Kim, S. J. Yun, Y. Lee, C. Seo, G. H. Han, K. K. Kim, Y. H. Lee, and J. Kim, Biexciton emission from edges and grain boundaries of triangular WS2 monolayers, ACS Nano 10(2), 2399 (2016)CrossRefGoogle Scholar
  34. 34.
    A. Venkatakrishnan, H. Chua, P. Tan, Z. Hu, H. Liu, Y. Liu, A. Carvalho, J. Lu, and C. H. Sow, Microsteganography on WS2 monolayers tailored by direct laser painting, ACS Nano 11(1), 713 (2017)CrossRefGoogle Scholar
  35. 35.
    J. C. Kim, D. R. Wake, and J. P. Wolfe, Thermo dynamics of biexcitons in a GaAs quantum well, Phys. Rev. B 50(20), 15099 (1994)ADSCrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Physics and Key Laboratory of MEMS of the Ministry of EducationSoutheast UniversityNanjingChina

Personalised recommendations