Advertisement

Frontiers of Physics

, 13:137306 | Cite as

Evolution of individual quantum Hall edge states in the presence of disorder

  • Kai-Tong Wang
  • Fuming Xu
  • Yanxia Xing
  • Hong-Kang Zhao
Research Article
  • 19 Downloads

Abstract

By using the Bloch eigenmode matching approach, we numerically study the evolution of individual quantum Hall edge states with respect to disorder. As demonstrated by the two-parameter renormalization group flow of the Hall and Thouless conductances, quantum Hall edge states with high Chern number n are completely different from that of the n = 1 case. Two categories of individual edge modes are evaluated in a quantum Hall system with high Chern number. Edge states from the lowest Landau level have similar eigenfunctions that are well localized at the system edge and independent of the Fermi energy. On the other hand, at fixed Fermi energy, the edge state from higher Landau levels exhibit larger expansion, which results in less stable quantum Hall states at high Fermi energies. By presenting the local current density distribution, the effect of disorder on eigenmode-resolved edge states is distinctly demonstrated.

Keywords

quantum Hall edge states Landau level quantum phase transition 

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 11674024 and 11504240). F. Xu acknowledges support from Shenzhen Key Lab Fund (Grant No. ZDSYS 20170228105421966).

References

  1. 1.
    K. V. Klitzing, G. Dorda, and M. Pepper, New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance, Phys. Rev. Lett. 45(6), 494 (1980)CrossRefADSGoogle Scholar
  2. 2.
    A. Bao, Y. H. Chen, H. F. Lin, H. D. Liu, and X. Z. Zhang, Quantum phase transitions in two-dimensional strongly correlated fermion systems, Front. Phys. 10(5), 106401 (2015)CrossRefGoogle Scholar
  3. 3.
    F. Evers and A. D. Mirlin, Anderson transitions, Rev. Mod. Phys. 80(4), 1355 (2008)CrossRefADSGoogle Scholar
  4. 4.
    A. M. M. Pruisken, Universal singularities in the integral quantum Hall effect, Phys. Rev. Lett. 61(11), 1297 (1988)CrossRefADSGoogle Scholar
  5. 5.
    D. E. Khmel’nitskii, Quantization of Hall conductivity, Pis’ma Z. Eksp. Teor. Fiz. 38, 454 (1983) [JETP Lett. 38(9), 552 (1983)]Google Scholar
  6. 6.
    J. Song, and E. Prodan, Characterization of the quantized Hall insulator phase in the quantum critical regime, Eur. Phys. Lett. 105(3), 37001 (2014)CrossRefADSGoogle Scholar
  7. 7.
    M. A. Werner, A. Brataas, F. von Oppen, and G. Zaránd, Anderson localization and quantum Hall effect: Numerical observation of two-parameter scaling, Phys. Rev. B 91(12), 125418 (2015)CrossRefADSGoogle Scholar
  8. 8.
    S. Kivelson, D. H. Lee, and S. C. Zhang, Global phase diagram in the quantum Hall effect, Phys. Rev. B 46(4), 2223 (1992)CrossRefADSGoogle Scholar
  9. 9.
    S. H. Song, D. Shahar, D. C. Tsui, Y. H. Xie, and D. Monroe, New universality at the magnetic field driven insulator to integer quantum Hall effect transitions, Phys. Rev. Lett. 78(11), 2200 (1997)CrossRefADSGoogle Scholar
  10. 10.
    T. Wang, K. P. Clark, G. F. Spencer, A. M. Mack, and W. P. Kirk, Magnetic-field-induced metal-insulator transition in two dimensions, Phys. Rev. Lett. 72(5), 709 (1994)CrossRefADSGoogle Scholar
  11. 11.
    S. V. Kravchenko, W. Mason, J. E. Furneaux, and V. M. Pudalov, Global phase diagram for the quantum Hall effect: An experimental picture, Phys. Rev. Lett. 75(5), 910 (1995)CrossRefADSGoogle Scholar
  12. 12.
    D. N. Sheng and Z. Y. Weng, New universality of the metal-insulator transition in an integer quantum Hall effect system, Phys. Rev. Lett. 80(3), 580 (1998)CrossRefADSGoogle Scholar
  13. 13.
    D. N. Sheng and Z. Y. Weng, Phase diagram of the integer quantum Hall effect, Phys. Rev. B 62(23), 15363 (2000)CrossRefADSGoogle Scholar
  14. 14.
    X. C. Xie, D. Z. Liu, B. Sundaram, and Q. Niu, Transition from the integer quantum Hall state to the insulator state, Phys. Rev. B 54(7), 4966 (1996)CrossRefADSGoogle Scholar
  15. 15.
    B. I. Halperin, Quantized Hall conductance, currentcarrying edge states, and the existence of extended states in a two-dimensional disordered potential, Phys. Rev. B 25(4), 2185 (1982)Google Scholar
  16. 16.
    M. Büttiker, Absence of backscattering in the quantum Hall effect in multiprobe conductors, Phys. Rev. B 38, 9375 (1988)CrossRefADSGoogle Scholar
  17. 17.
    Y. Ren, Z. Qiao, and Q. Niu, Topological phases in two-dimensional materials: A review, Rep. Prog. Phys. 79(6), 066501 (2016)CrossRefADSGoogle Scholar
  18. 18.
    Y. Ren, J. Zeng, K. Wang, F. Xu, and Z. Qiao, Tunable current partition at zero-line intersection of quantum anomalous Hall topologies, Phys. Rev. B 96(15), 155445 (2017)CrossRefADSGoogle Scholar
  19. 19.
    Q. Niu, D. J. Thouless, and Y. S. Wu, Quantized Hall conductance as a topological invariant, Phys. Rev. B 31(6), 3372 (1985)MathSciNetCrossRefADSGoogle Scholar
  20. 20.
    Y. Hatsugai, K. Ishibashi, and Y. Morita, Sum rule of Hall conductance in a random quantum phase transition, Phys. Rev. Lett. 83(11), 2246 (1999)CrossRefADSGoogle Scholar
  21. 21.
    A. M. Essin and J. E. Moore, Topological insulators beyond the Brillouin zone via Chern parity, Phys. Rev. B 76(16), 165307 (2007)CrossRefADSGoogle Scholar
  22. 22.
    Y. Y. Zhang, R. L. Chu, F. C. Zhang, and S. Q. Shen, Localization and mobility gap in the topological Anderson insulator, Phys. Rev. B 85(3), 035107 (2012)CrossRefADSGoogle Scholar
  23. 23.
    Z. G. Song, Y. Y. Zhang, J. T. Song, and S. S. Li, Route towards localization for quantum anomalous Hall systems with Chern number 2, Sci. Rep. 6(1), 19018 (2016)CrossRefADSGoogle Scholar
  24. 24.
    K. Nomura, S. Ryu, M. Koshino, C. Mudry, and A. Furusaki, Quantum Hall effect of massless Dirac fermions in a vanishing magnetic field, Phys. Rev. Lett. 100(24), 246806 (2008)CrossRefADSGoogle Scholar
  25. 25.
    J. T. Edwards, and D. J. Thouless, Numerical studies of localization in disordered systems, J. Phys. C 5(8), 807 (1972)CrossRefADSGoogle Scholar
  26. 26.
    J. S. Wang, B. K. Agarwalla, H. Li, and J. Thingna, Nonequilibrium Green’s function method for quantum thermal transport, Front. Phys. 9(6), 673 (2014)CrossRefGoogle Scholar
  27. 27.
    P. A. Khomyakov, G. Brocks, V. Karpan, M. Zwierzycki, and P. J. Kelly, Conductance calculations for quantum wires and interfaces: Mode matching and Green’s functions, Phys. Rev. B 72(3), 035450 (2005)CrossRefADSGoogle Scholar
  28. 28.
    T. Ando, Quantum point contacts in magnetic fields, Phys. Rev. B 44(15), 8017 (1991)CrossRefADSGoogle Scholar
  29. 29.
    L. Zhang, Y. Xing, and J. Wang, First-principles investigation of transient dynamics of molecular devices, Phys. Rev. B 86(15), 155438 (2012)CrossRefADSGoogle Scholar
  30. 30.
    Y. Xing, Q. F. Sun, and J. Wang, Influence of dephasing on the quantum Hall effect and the spin Hall effect, Phys. Rev. B 77(11), 115346 (2008)CrossRefADSGoogle Scholar
  31. 31.
    T. Fukui and Y. Hatsugai, Quantum spin Hall effect in three dimensional materials: Lattice computation of Z2 topological invariants and its application to Bi and Sb, J. Phys. Soc. Jpn. 76(5), 053702 (2007)CrossRefADSGoogle Scholar
  32. 32.
    T. Fukui, Y. Hatsugai, and H. Suzuki, Chern numbers in discretized Brillouin zone: Efficient method of computing (spin) Hall conductances, J. Phys. Soc. Jpn. 74(6), 1674 (2005)CrossRefADSGoogle Scholar
  33. 33.
    T. Fukui and Y. Hatsugai, Topological aspects of the quantum spin-Hall effect in graphene: Z2 topological order and spin Chern number, Phys. Rev. B 75(12), 121403 (2007)CrossRefADSGoogle Scholar
  34. 34.
    D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, Quantized Hall conductance in a twodimensional periodic potential, Phys. Rev. Lett. 49(6), 405 (1982)CrossRefADSGoogle Scholar
  35. 35.
    M. V. Berry, Quantal phase factors accompanying adiabatic changes, Proc. R. Soc. Lond. A 392(1802), 45 (1984)MathSciNetCrossRefADSGoogle Scholar
  36. 36.
    B. Simon, Holonomy, the quantum adiabatic theorem, and Berry’s phase, Phys. Rev. Lett. 51(24), 2167 (1983)ADSGoogle Scholar
  37. 37.
    D. Braun, E. Hofstetter, A. MacKinnon, and G. Montambaux, Level curvatures and conductances: A numerical study of the Thouless relation, Phys. Rev. B 55(12), 7557 (1997)CrossRefADSGoogle Scholar
  38. 38.
    A. P. Jauho, N. S. Wingreen, and Y. Meir, Timedependent transport in interacting and noninteracting resonant-tunneling systems, Phys. Rev. B 50(8), 5528 (1994)CrossRefADSGoogle Scholar
  39. 39.
    Y. Xing, J. Wang, and Q. F. Sun, Focusing of electron flow in a bipolar graphene ribbon with different chiralities, Phys. Rev. B 81(16), 165425 (2010)CrossRefADSGoogle Scholar
  40. 40.
    J. Li and S. Q. Shen, Spin-current-induced charge accumulation and electric current in semiconductor nanostructures with Rashba spin-orbit coupling, Phys. Rev. B 76(15), 153302 (2007)CrossRefADSGoogle Scholar
  41. 41.
    H. Jiang, L. Wang, Q. F. Sun, and X. C. Xie, Numerical study of the topological Anderson insulator in HgTe/CdTe quantum wells, Phys. Rev. B 80(16), 165316 (2009)CrossRefADSGoogle Scholar
  42. 42.
    Y. Xing, L. Zhang, and J. Wang, Topological Anderson insulator phenomena, Phys. Rev. B 84(3), 035110 (2011)CrossRefADSGoogle Scholar
  43. 43.
    D. H. Lee and J. D. Joannopoulos, Simple scheme for surface-band calculations (II): The Green’s function, Phys. Rev. B 23(10), 4997 (1981)CrossRefADSGoogle Scholar
  44. 44.
    D. H. Lee and J. D. Joannopoulos, Simple scheme for surface-band calculations (I), Phys. Rev. B 23(10), 4988 (1981)CrossRefADSGoogle Scholar
  45. 45.
    S. Sanvito, C. J. Lambert, J. H. Jefferson, and A. M. Bratkovsky, General Green’s-function formalism for transport calculations with spd Hamiltonians and giant magnetoresistance in Co- and Ni-based magnetic multilayers, Phys. Rev. B 59(18), 11936 (1999)CrossRefADSGoogle Scholar
  46. 46.
    I. Rungger and S. Sanvito, Algorithm for the construction of self-energies for electronic transport calculations based on singularity elimination and singular value decomposition, Phys. Rev. B 78(3), 035407 (2008)CrossRefADSGoogle Scholar
  47. 47.
    T. Ando, Electron localization in a two-dimensional system in strong magnetic fields (I): Case of short-range scatterers, J. Phys. Soc. Jpn. 52(5), 1740 (1983)CrossRefADSGoogle Scholar
  48. 48.
    T. Ando, Electron localization in a two-dimensional system in strong magnetic fields (II): Long-range scatterers and response functions, J. Phys. Soc. Jpn. 53(9), 3101 (1984)CrossRefADSGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of PhysicsBeijing Institute of TechnologyBeijingChina
  2. 2.Shenzhen Key Laboratory of Advanced Thin Films and Applications, College of Physics and EnergyShenzhen UniversityShenzhenChina
  3. 3.Beijing Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems, School of PhysicsBeijing Institute of TechnologyBeijingChina

Personalised recommendations