Advertisement

Frontiers of Physics

, 13:136104 | Cite as

High-pressure polymorphs of LiPN2: A first-principles study

  • Jian Lv
  • Xin Yang
  • Dan Xu
  • Yu-Xin Huang
  • Hong-Bo Wang
  • Hui Wang
Research Article

Abstract

In this work, high-pressure phase behavior of LiPN2 within 0–300 GPa was studied by using an unbiased structure searching method in combination with first-principles calculations. Three pressureinduced phase transitions were predicted, as tI16 → hR4 → cF64 → oP8 at 44, 136, and 259 GPa, respectively. The six-fold coordination environments were found for all high-pressure polymorphs, which are substantially different from the four-fold coordination environments observed in the tI16 structure. The hR4 and cF64 structures consist of close-packed PN6 and LiN6 octahedra connected by edge-sharing, whereas the oP8 structure is built up from edge- and face-sharing PN6 and LiN6 octahedra with N lying in the center of the trigonal prisms. The electronic structure analysis reveals that LiPN2 is a semiconductor within the pressure range studied and P-N and Li-N bonds are covalent and ionic, respectively. The results obtained are expected to provide insight and guidance for future experiments on LiPN2 and other alkali metal nitridophosphates.

Keywords

lithium nitridophosphates phase transition high pressure first principles 

Notes

Acknowledgments

The authors acknowledge funding support from the National Natural Science Foundation of China (Grant Nos. 11474128 and 11534003), Science Challenge Project (Grant No. TZ2016001), National Key Research and Development Program of China (Grant Nos. 2016YFB0201200, 2016YFB0201201, and 2016YFB0201204), and Program for JLU Science and Technology Innovative Research Team. Parts of the calculations were performed in the high-performance computing center of Jilin University.

References

  1. 1.
    E. M. Bertschler, R. Niklaus, and W. Schnick, Li12P3N9 with non-condensed [P3N9]12--rings and its highpressure polymorph Li4PN3 with infinite chains of PN- 4 tetrahedra, Chemistry 23(40), 9592 (2017)CrossRefGoogle Scholar
  2. 2.
    A. Al-Qawasmeh and N. A. W. Holzwarth, Li14P2O3N6 and Li7PN4: Computational study of two nitrogen rich crystalline LiPON electrolyte materials, J. Power Sources 364, 410 (2017)ADSCrossRefGoogle Scholar
  3. 3.
    W. Schnick and J. Luecke, Lithium ion conductivity of LiPN2 and Li7PN4, Solid State Ion. 38(3–4), 271 (1990)CrossRefGoogle Scholar
  4. 4.
    E. M. Bertschler, C. Dietrich, J. Janek, and W. Schnick, Li18P6N16 — A lithium nitridophosphate with unprecedented tricyclic [P6N16]18- Ions, Chemistry 23(9), 2185 (2017)CrossRefGoogle Scholar
  5. 5.
    W. Schnick and U. Berger, Li10P4N10 — A lithium phosphorus(V) nitride containing the new complex anion [P4N10]10-, Angew. Chem. Int. Ed. Engl. 30(7), 830 (1991)CrossRefGoogle Scholar
  6. 6.
    R. Marchand, P. L’Haridon, and Y. Laurent, Etude cristallochimique de LiPN2: Une structure derivée de la cristobalite, J. Solid State Chem. 43(2), 126 (1982)ADSCrossRefGoogle Scholar
  7. 7.
    Y. M. Basalaev, Y. N. Zhuravlev, V. S. Permina, and A. S. Poplavnoi, LiPN2 and NaPN2 crystals: Structural features and chemical bonding, J. Struct. Chem. 48(6), 996 (2007)CrossRefGoogle Scholar
  8. 8.
    A. V. Kosobutsky, Lattice dynamics and elastic properties of LiPN2 and NaPN2, J. Phys. Condens. Matter 21(40), 405404 (2009)CrossRefGoogle Scholar
  9. 9.
    D. Baumann and W. Schnick, Pentacoordinate phosphorus in a high-pressure polymorph of phosphorus nitride imide P4N6(NH), Angew. Chem. Int. Ed. 53(52), 14490 (2014)CrossRefGoogle Scholar
  10. 10.
    F. J. Pucher, S. R. Römer, F. W. Karau, and W. Schnick, Phenakite-type BeP2N4 — A possible precursor for a new hard spinel-type material, Chemistry 16(24), 7208 (2010)CrossRefGoogle Scholar
  11. 11.
    Y. Wang, J. Lv, L. Zhu, and Y. Ma, Crystal structure prediction via particle-swarm optimization, Phys. Rev. B 82(9), 094116 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    Y. Wang, J. Lv, L. Zhu, and Y. Ma, CALYPSO: A method for crystal structure prediction, Comput. Phys. Commun. 183(10), 2063 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    Y. Wang and Y. Ma, Perspective: Crystal structure prediction at high pressures, J. Chem. Phys. 140(4), 040901 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    Y. Wang, J. Lv, L. Zhu, S. Lu, K. Yin, Q. Li, H. Wang, L. Zhang, and Y. Ma, Materials discovery via CALYPSO methodology, J. Phys.: Condens. Matter 27(20), 203203 (2015)ADSGoogle Scholar
  15. 15.
    H. Wang, Y. Wang, J. Lv, Q. Li, L. Zhang, and Y. Ma, CALYPSO structure prediction method and its wide application, Comput. Mater. Sci. 112 (Part B), 406 (2016)CrossRefGoogle Scholar
  16. 16.
    L. Zhang, Y. Wang, J. Lv, and Y. Ma, Materials discovery at high pressures, Nat. Rev. Mater. 2(4), 17005 (2017)ADSCrossRefGoogle Scholar
  17. 17.
    G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)ADSCrossRefGoogle Scholar
  18. 18.
    P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50(24), 17953 (1994)ADSCrossRefGoogle Scholar
  19. 19.
    H. J. Monkhorst and J. D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13(12), 5188 (1976)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    A. Togo, F. Oba, and I. Tanaka, First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures, Phys. Rev. B 78(13), 134106 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    S. Maintz, V. L. Deringer, A. L. Tchougréeff, and R. Dronskowski, LOBSTER: A tool to extract chemical bonding from plane-wave based DFT, J. Comput. Chem. 37(11), 1030 (2016)CrossRefGoogle Scholar
  22. 22.
    K. Momma and F. Izumi, VESTA 3 for threedimensional visualization of crystal, volumetric and morphology data, J. Appl. Cryst. 44(6), 1272 (2011)CrossRefGoogle Scholar
  23. 23.
    D. Xu and B. Li, Exotic high-pressure behavior of double nitride CuPN2 (unpublished)Google Scholar
  24. 24.
    R. W. G. Wyckoff, Crystal structure of high temperature cristobalite, Am. J. Sci. s5–9(54), 448 (1925)ADSCrossRefGoogle Scholar
  25. 25.
    M. Råsander and M. A. Moram, Electronic structure of the high and low pressure polymorphs of MgSiN2, Mater. Res. Express 3(8), 085902 (2016)ADSCrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Materials Science and EngineeringJilin UniversityChangchunChina
  2. 2.State Key Lab of Superhard Materials, College of PhysicsJilin UniversityChangchunChina
  3. 3.College of Basic ScienceChangchun University of TechnologyChangchunChina

Personalised recommendations