Frontiers of Physics

, 13:130308 | Cite as

Evolution of innovative behaviors on scale-free networks

  • Ying-Ting Lin
  • Xiao-Pu Han
  • Bo-Kui Chen
  • Jun Zhou
  • Bing-Hong Wang
Research Article
  • 16 Downloads

Abstract

Innovation, which involves technological transformation and management reorganization, brings about significant changes in modern society. In this paper, to investigate how innovations can be promoted, we propose a game-based model to study the co-evolutionary dynamics of human innovative behaviors. A simulation on scale-free networks is conducted, in which the innovative behavior of each node is determined and updated based on the feedback regarding its innovation, namely the diffusion of the innovation status. Numerical simulations of the model generate a series of patterns, which is consistent with people’s daily experiences and perceptions as regards real-world innovative behaviors. Specifically, various scaling spatiotemporal properties and rich structural impacts on dynamics can be observed. This model provides a novel approach to understand the evolution of innovative behaviors and provides insight for strategy studies of innovation promotion.

Keywords

innovative behaviors innovation diffusion evolutionary game coevolution dynamics scale-free networks 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11547254, 11275186, 91024026, 11205040 and FOM2014OF001), Zhejiang Provincial Natural Science Foundation of China (No. LGF18F030007), the Singapore Ministry of Education Research Grant (Grant No. MOE 2013-T2-2-033), and the Programmatic grant no. A1687b0033 from the Singapore government’s Research, Innovation and Enterprise 2020 plan (Advanced Manufacturing and Engineering domain).

References

  1. 1.
    C. Castellano, S. Fortunato, and V. Loreto, Statistical physics of social dynamics, Rev. Mod. Phys. 81(2), 591 (2009)ADSCrossRefGoogle Scholar
  2. 2.
    L. F. Costa, J. O. N. Jr Oliveira, G. Travieso, F. A. Rodrigues, P. R. Villas Boas, L. Antiqueira, M. P. Viana, and L. E. Correa Rocha, Analyzing and modeling real world phenomena with complex networks: A survey of applications, Adv. Phys. 60(3), 329 (2011)ADSCrossRefGoogle Scholar
  3. 3.
    S. Galam, Sociophysics: A Physicists Modeling of Psycho-Political Phenomena, Berlin: Springer, 2012CrossRefGoogle Scholar
  4. 4.
    D. Stauffer, A biased review of sociophysics, J. Stat. Phys. 151(1–2), 9 (2013)ADSMathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    W. Z. Zheng, Y. Liang, and J. P. Huang, Equilibrium state and non-equilibrium steady state in an isolated human system, Front. Phys. 9(1), 128 (2014)CrossRefGoogle Scholar
  6. 6.
    T. T. Chen, B. Zheng, Y. Li, and X.F. Jiang, New approaches in agent-based modeling of complex financial systems, Front. Phys. 12(6), 128905 (2017)CrossRefGoogle Scholar
  7. 7.
    P. A. Geroski, Models of technology diffusion, Res. Policy 29(4–5), 603 (2000)CrossRefGoogle Scholar
  8. 8.
    R. Peres, E. Muller, and V. Mahajan, Innovation diffusion and new product growth models: A critical review and research directions, Intern. J. Res. Mar. 27, 91 (2010)CrossRefGoogle Scholar
  9. 9.
    E. Kiesling, M. Günther, C. Stummer, and L. M. Wakolbinger, Agent-based simulation of innovation diffusion: A review, Cent. Eur. J. Oper. Res. 20(2), 183 (2012)CrossRefGoogle Scholar
  10. 10.
    N. Meade and T. Islam, Modelling and forecasting the diffusion of innovation -A 25-year review, Int. J. Forecast. 22(3), 519 (2006)CrossRefGoogle Scholar
  11. 11.
    J. Goldenberg, B. Libai, S. Solomon, N. Jan, and D. Stauffer, Marketing percolation, Physica A 284(1–4), 335 (2000)ADSCrossRefGoogle Scholar
  12. 12.
    M. Hohnisch, S. Pittnauer, and D. Stauffer, A percolation-based model explaining delayed takeoff in new-product diffusion, Ind. Corp. Change 17(5), 1001 (2008)CrossRefGoogle Scholar
  13. 13.
    S. Cantono and G. Silverberg, A percolation model of eco-innovation diffusion: The relationship between diffusion, learning economies and subsidies, Technol. Forecast. Soc. 76(4), 487 (2009)CrossRefGoogle Scholar
  14. 14.
    J. Goldenberg and S. Efroni, Using cellular automata modeling of the emergence of innovations, Technol. Forecast. Soc. 68(3), 293 (2001)CrossRefGoogle Scholar
  15. 15.
    J. Goldenberg, B. Libai, and E. Muller, Riding the saddle: How cross-market communications can create a major slump in sales, J. Mark. 66(2), 1 (2002)CrossRefGoogle Scholar
  16. 16.
    S. Moldovan and J. Goldenberg, Cellular automata modeling of resistance to innovations: Effects and solutions, Technol. Forecast. Soc. 71(5), 425 (2004)CrossRefGoogle Scholar
  17. 17.
    C. E. Laciana and S. L. Rovere, Ising-like agent-based technology diffusion model: Adoption patterns vs. seeding strategies, Physica A 390(6), 1139 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    C. E. Laciana and N. Oteiza-Aguirre, An agent based multi-optional model for the diffusion of innovations, Physica A 394, 254 (2014)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    M. A. Janssen and W. Jager, Simulating market dynamics: Interactions between consumer psychology and social networks, Artif. Life 9(4), 343 (2003)CrossRefGoogle Scholar
  20. 20.
    L. Kuandykov and M. Sokolov, Impact of social neighborhood on diffusion of innovation S-curve, Decis. Support Syst. 48(4), 531 (2010)CrossRefGoogle Scholar
  21. 21.
    H. Choi, S. H. Kim, and J. Lee, Role of network structure and network effects in diffusion of innovations, Ind. Mark. Manage. 39(1), 170 (2010)CrossRefGoogle Scholar
  22. 22.
    J. D. Bohlmann, R. J. Calantone, and M. Zhao, The effects of market network heterogeneity on innovation diffusion: An agent-based modeling approach, J. Prod. Innov. Manage. 27(5), 741 (2010)CrossRefGoogle Scholar
  23. 23.
    R. Peres, The impact of network characteristics on the diffusion of innovations, Physica A 402, 330 (2014)ADSCrossRefGoogle Scholar
  24. 24.
    J. Zhang, F. Xia, Z. Ning, T. M. Bekele, X. Bai, X. Su, and J. Wang, A Hybrid Mechanism for Innovation Diffusion in Social Networks, IEEE Access 4, 5408 (2016)CrossRefGoogle Scholar
  25. 25.
    H. Dong, W. Hou, and J. Wang, Research on high-tech industry cluster innovation diffusion based on the perspective of complex network: Taking Zhongguancun industrial park as an example, Science and Technology Management Research 36, 149 (2016)Google Scholar
  26. 26.
    G. Szabó and G. Fáth, Evolutionary games on graphs, Phys. Rep. 446(4–6), 97 (2007)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    M. Perc and A. Szolnoki, Coevolutionary games -A mini review, Biosystems 99(2), 109 (2010)CrossRefGoogle Scholar
  28. 28.
    W. Liu, K. Yue, H. Wu, J. Li, D. Liu, and D. Tang, Containment of competitive influence spread in social networks, Knowl. Base. Syst. 109, 266 (2016)CrossRefGoogle Scholar
  29. 29.
    B. Chopard, M. Droz, and S. Galam, An evolution theory in finite size systems, Eur. Phys. J. B 16(4), 575 (2000)ADSCrossRefGoogle Scholar
  30. 30.
    A. Montanari and A. Saberi, The spread of innovations in social networks, Proc. Natl. Acad. Sci. USA 107(47), 20196 (2010)ADSCrossRefGoogle Scholar
  31. 31.
    H. P. Young, The dynamics of social innovation, Proc. Natl. Acad. Sci. USA 108(Suppl. 4), 21285 (2011)ADSCrossRefGoogle Scholar
  32. 32.
    A. Di Mare and V. Latora, Opinion formation models based on game theory, Int. J. Mod. Phys. C 18(09), 1377 (2007)ADSCrossRefMATHGoogle Scholar
  33. 33.
    N. Alon, M. Feldman, A. D. Procaccia, and M. Tennenholtz, A note on competitive diffusion through social networks, Inf. Process. Lett. 110(6), 221 (2010)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    R. Takehara, M. Hachimori, and M. Shigeno, A comment on pure-strategy Nash equilibria in competitive diffusion games, Inf. Process. Lett. 112(3), 59 (2012)CrossRefMATHGoogle Scholar
  35. 35.
    G. Silverberg, The discrete charm of the bourgeoisie: quantum and continuous perspectives on innovation and growth, Res. Policy 31(8–9), 1275 (2002)CrossRefGoogle Scholar
  36. 36.
    G. Silverberg and B. Verspagen, A percolation model of innovation in complex technology spaces, J. Econ. Dyn. Control 29(1–2), 225 (2005)MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    G. Silverberg and B. Verspagen, Self-organization of R&D search in complex technology spaces, J. Econ. Interact. Coord. 2(2), 211 (2007)CrossRefGoogle Scholar
  38. 38.
    S. Bornholdt, M. H. Jensen, and K. Sneppen, Emergence and decline of scientific paradigms, Phys. Rev. Lett. 106(5), 058701 (2011)ADSCrossRefGoogle Scholar
  39. 39.
    Y. T. Lin, X. P. Han, and B. H. Wang, Dynamics of human innovative behaviors, Physica A 394, 74 (2014)ADSCrossRefGoogle Scholar
  40. 40.
    J. Juang and Y. H. Liang, The impact of vaccine success and awareness on epidemic dynamics, Chaos 26(11), 113105 (2016)ADSMathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    T. Liu, P. Li, Y. Chen, and J. Zhang, Community size effects on epidemic spreading in multiplex social networks, PLoS One 11(3), e0152021 (2016)CrossRefGoogle Scholar
  42. 42.
    W. Wang, M. Chen, Y. Min, and X. Jin, Structural diversity effects of multilayer networks on the threshold of interacting epidemics, Physica A 443, 254 (2016)ADSMathSciNetCrossRefGoogle Scholar
  43. 43.
    J. Zhou and Z. Liu, Epidemic spreading in complex networks, Front. Phys. China 3(3), 331 (2008)ADSCrossRefGoogle Scholar
  44. 44.
    M. Tomochi, H. Murata, and M. Kono, A consumerbased model of competitive diffusion: The multiplicative effects of global and local network externalities, J. Evol. Econ. 15(3), 273 (2005)CrossRefGoogle Scholar
  45. 45.
    L. Weng, A. Flammini, A. Vespignani, and F. Menczer, Competition among memes in a world with limited attention, Sci. Rep. 2(1), 335 (2012)ADSCrossRefGoogle Scholar
  46. 46.
    J. P. Gleeson, J. A. Ward, K. P. O’sullivan, and W. T. Lee, Competition-induced criticality in a model of meme popularity, Phys. Rev. Lett. 112(4), 048701 (2014)ADSCrossRefGoogle Scholar
  47. 47.
    R. Hou, J. Wu, and H. S. Du, Customer social network affects marketing strategy: A simulation analysis based on competitive diffusion model, Physica A 469, 644 (2017)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Ying-Ting Lin
    • 1
  • Xiao-Pu Han
    • 2
  • Bo-Kui Chen
    • 3
    • 4
  • Jun Zhou
    • 4
  • Bing-Hong Wang
    • 5
  1. 1.Department of Physics and Electronic Information EngineeringMinjiang UniversityFuzhouChina
  2. 2.Alibaba Research Center for Complexity SciencesHangzhou Normal UniversityHangzhouChina
  3. 3.Division of Logistics and Transportation, Graduate School at ShenzhenTsinghua UniversityShenzhenChina
  4. 4.Department of Computer Science, School of ComputingNational University of SingaporeSingaporeSingapore
  5. 5.Department of Modern Physics and Nonlinear Science CenterUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations