Frontiers of Physics

, 13:138101 | Cite as

Vertically aligned γ-AlOOH nanosheets on Al foils as flexible and reusable substrates for NH3 adsorption

  • Chen Yang
  • Ying Chen
  • Dan Liu
  • Jinfeng Wang
  • Cheng Chen
  • Jiemin Wang
  • Ye Fan
  • Shaoming Huang
  • Weiwei Lei
Research Article
Part of the following topical collections:
  1. Special Topic: Graphene and other Two-Dimensional Materials


Vertically aligned γ-AlOOH nanosheets (NSs) have been successfully fabricated on flexible Al foils via a solvothermal route without morphology-directing agents. Three different reaction temperature (25, 80, and 120 ◦C) and time (30 min, 45 min, and 24 h) are discussed for the growth period, which efficiently tune the density and size of the γ-AlOOH NSs. Meanwhile, the growth speed of the nanosheets confirms that dominant growth stage is seen in the initial 45 min. Furthermore, the interlayer of the γ-AlOOH NSs displays an average height of 140 nm and superhydrophilicity. By dynamic adsorption, the assynthesized γ-AlOOH NSs exhibit an outstanding NH3 adsorption capacity of up to 146 mg/g and stably excellent regeneration for 5 cycles. The mechanism of NH3 adsorption on the in-plane of the γ-AlOOH NSs is explained by the Lewis acid/base theory. The H-bond interactions among the NH3 molecules and the edge groups (-OH) further improve the capture ability of the nanosheets.


γ-AlOOH nanosheets NH3 adsorption Lewis acid/base theory H bonds interaction 



This work was financially supported by the Australian Research Council Discovery Program, the Australian Research Council Discovery Early Career Research Award scheme (DE150101617 and DE140100716), and Central Research Grant Scheme of Deakin University.


  1. 1.
    A. Qajar, M. Peer, M. R. Andalibi, R. Rajagopalan, and H. C. Foley, Enhanced ammonia adsorption on functionalized nanoporous carbons, Microporous Mesoporous Mater. 218, 15 (2015)CrossRefGoogle Scholar
  2. 2.
    J. B. DeCoste, M. S. Jr Denny, G. W. Peterson, J. J. Mahle, and S. M. Cohen, Enhanced aging properties of HKUST-1 in hydrophobic mixed-matrix membranes for ammonia adsorption, Chem. Sci. 7(4), 2711 (2016)CrossRefGoogle Scholar
  3. 3.
    T. Yan, T. X. Li, R. Z. Wang, and R. Jia, Experimental investigation on the ammonia adsorption and heat transfer characteristics of the packed multi-walled carbon nanotubes, Appl. Therm. Eng. 77, 20 (2015)CrossRefGoogle Scholar
  4. 4.
    T. Yan, T. X. Li, H. Li, and R. Z. Wang, Experimental study of the ammonia adsorption characteristics on the composite sorbent of CaCl2 and multi-walled carbon nanotubes, Int. J. Refrig. 46, 165 (2014)CrossRefGoogle Scholar
  5. 5.
    M. Seredych, J. A. Rossin, and T. J. Bandosz, Changes in graphite oxide texture and chemistry upon oxidation and reduction and their effect on adsorption of ammonia, Carbon 49(13), 4392 (2011)CrossRefGoogle Scholar
  6. 6.
    Y. Chen, C. Y. Yang, X. Q. Wang, J. F. Yang, K. Ouyang, and J. P. Li, Kinetically controlled ammonia vapor diffusion synthesis of a Zn(ii) MOF and its H2O/NH3 adsorption properties, J. Mater. Chem. A 4(26), 10345 (2016)CrossRefGoogle Scholar
  7. 7.
    D. P. Saha and S. G. Deng, Ammonia adsorption and its effects on framework stability of MOF-5 and MOF-177, J. Colloid Interface Sci. 348(2), 615 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    A. A. Halim, H. A. Aziz, M. A. M. Johari, and K. S. Ariffin, Comparison study of ammonia and COD adsorption on zeolite, activated carbon and composite materials in landfill leachate treatment, Desalination 262(1–3), 31 (2010)CrossRefGoogle Scholar
  9. 9.
    D. Saha and S. G. Deng, Characteristics of ammonia adsorption on activated alumina, J. Chem. Eng. Data 55(12), 5587 (2010)CrossRefGoogle Scholar
  10. 10.
    D. Liu, W. W. Lei, S. Qin, K. D. Klika, and Y. Chen, Superior adsorption of pharmaceutical molecules by highly porous BN nanosheets, Phys. Chem. Chem. Phys. 18(1), 84 (2016)ADSCrossRefGoogle Scholar
  11. 11.
    W. W. Lei, H. Zhang, Y. Wu, B. Zhang, D. Liu, S. Qin, Z. W. Liu, L. M. Liu, Y. M. Ma, and Y. Chen, Oxygen-doped boron nitride nanosheets with excellent performance in hydrogen storage, Nano Energy 6, 219 (2014)CrossRefGoogle Scholar
  12. 12.
    C. Petit, L. L. Huang, J. Jagiello, J. Kenvin, K. E. Gubbins, and T. J. Bandosz, Toward understanding reactive adsorption of ammonia on Cu-MOF/graphite oxide nanocomposites, Langmuir 27(21), 13043 (2011)CrossRefGoogle Scholar
  13. 13.
    C. Petit and T. J. Bandosz, Enhanced adsorption of ammonia on metal-organic framework/graphite oxide composites: Analysis of surface interactions, Adv. Funct. Mater. 20(1), 111 (2010)CrossRefGoogle Scholar
  14. 14.
    C. Petit and T. J. Bandosz, Synthesis, characterization, and ammonia adsorption properties of mesoporous metal-organic framework (MIL(Fe))-graphite oxide composites: Exploring the limits of materials fabrication, Adv. Funct. Mater. 21(11), 2108 (2011)CrossRefGoogle Scholar
  15. 15.
    S. Kang, J. Chun, N. Park, S. M. Lee, H. J. Kim, and S. U. Son, Hydrophobic zeolites coated with microporous organic polymers: adsorption behavior of ammonia under humid conditions, Chem. Commun. 51(59), 11814 (2015)CrossRefGoogle Scholar
  16. 16.
    Y. Corre, M. Seredych, and T. J. Bandosz, Analysis of the chemical and physical factors affecting reactive adsorption of ammonia on graphene/nanoporous carbon composites, Carbon 55, 176 (2013)CrossRefGoogle Scholar
  17. 17.
    G. C. Li, Y. Q. Liu, D. Liu, L. H. Liu, and C. G. Liu, Synthesis of flower-like Boehmite (AlOOH) via a simple solvothermal process without surfactant, Mater. Res. Bull. 45(10), 1487 (2010)CrossRefGoogle Scholar
  18. 18.
    Z. B. Shi, W. Q. Jiao, L. Chen, P. Wu, Y. M. Wang, and M. Y. He, Clean synthesis of hierarchically structured boehmite and g-alumina with a flower-like morphology, Microporous Mesoporous Mater. 224, 253 (2016)CrossRefGoogle Scholar
  19. 19.
    O. V. Bakina, E. A. Glazkova, N. V. Svarovskaya, A. S. Lozhkomoev, E. G. Khorobraya, and S. G. Psakhie, International Conference on Physical Mesomechanics of Multilevel Systems 2014, 1623, 35 (2014)Google Scholar
  20. 20.
    J. C. Xiao, H. H. Ji, Z. Q. Shen, W. Y. Yang, C. Y. Guo, S. J. Wang, X. W. Zhang, R. Fu, and F. X. Ling, Self-assembly of flower-like g-AlOOH and g-Al2O3 with hierarchical nanoarchitectures and enhanced adsorption performance towards methyl orange, RSC Adv. 4(66), 35077 (2014)CrossRefGoogle Scholar
  21. 21.
    A. S. Lozhkomoev, E. A. Glazkova, N. V. Svarovskaya, O. V. Bakina, S. O. Kazantsev, and M. I. Lerner, International Conference on Advanced Materials with Hierarchical Structure for New Technologies and Reliable Structures 2015, 1683 (2015)Google Scholar
  22. 22.
    A. S. Lozhkomoev, E. A. Glazkova, O. V. Bakina, M. I. Lerner, I. Gotman, E. Y. Gutmanas, S. O. Kazantsev, and S. G. Psakhie, Synthesis of core–shell AlOOH hollow nanospheres by reacting Al nanoparticles with water, Nanotechnology 27(20), 205603 (2016)ADSCrossRefGoogle Scholar
  23. 23.
    Y. Y. Dong, Y. J. Liu, L. Y. Meng, B. Wang, M. G. Ma, and Y. Y. Li, Facile hydrothermal synthesis of Ag@AgCl@AlOOH hollow microspheres and their characterizations, Mater. Lett. 181, 204 (2016)CrossRefGoogle Scholar
  24. 24.
    S. L. Liu, C. Y. Chen, Q. P. Liu, Y. W. Zhuo, D. Yuan, Z. H. Dai, and J. C. Bao, Two-dimensional porous g-AlOOH and g-Al2O3 nanosheets: Hydrothermal synthesis, formation mechanism and catalytic performance, RSC Adv. 5(88), 71728 (2015)CrossRefGoogle Scholar
  25. 25.
    L. Zhang, and Y. J. Zhu, Microwave-assisted Solvothermal Synthesis of AlOOH hierarchically nanostructured microspheres and their transformation to g-Al2O3 with similar morphologies, J. Phys. Chem. C 112(43), 16764 (2008)CrossRefGoogle Scholar
  26. 26.
    R. H. Sun, H. B. Zhang, J. Qu, H. Yao, J. Yao, and Z. Z. Yu, Supercritical carbon dioxide fluid assisted synthesis of hierarchical AlOOH@reduced graphene oxide hybrids for efficient removal of fluoride ions, Chem. Eng. J. 292, 174 (2016)CrossRefGoogle Scholar
  27. 27.
    R. Kumar, M. Ehsan, and M. A. Barakat, Synthesis and characterization of carbon/AlOOH composite for adsorption of chromium(VI) from synthetic wastewater, J. Ind. Eng. Chem. 20(6), 4202 (2014)CrossRefGoogle Scholar
  28. 28.
    R. Kumar, J. Rashid, and M. A. Barakat, Synthesis and characterization of a starch–AlOOH–FeS2 nanocomposite for the adsorption of congo red dye from aqueous solution, RSC Adv. 4(72), 38334 (2014)CrossRefGoogle Scholar
  29. 29.
    J. R. Wen, M. H. Liu, and C. Y. Mou, Synthesis of curtain-like crumpled boehmite and g-alumina nanosheets, CrystEngComm 17(9), 1959 (2015)CrossRefGoogle Scholar
  30. 30.
    Z. Tang, J. L. Liang, X. H. Li, J. F. Li, H. L. Guo, Y. Q. Liu, and C. G. Liu, Synthesis of flower-like Boehmite (g-AlOOH) via a one-step ionic liquid-assisted hydrothermal route, J. Solid State Chem. 202, 305 (2013)ADSCrossRefGoogle Scholar
  31. 31.
    G. J. Ji, M. M. Li, G. H. Li, G. M. Gao, H. F. Zou, S. C. Gan, and X. C. Xu, Hydrothermal synthesis of hierarchical micron flower-like g-AlOOH and g-Al2O3 superstructures from oil shale ash, Powder Technol. 215-216, 54 (2012)CrossRefGoogle Scholar
  32. 32.
    X. Y. Chen, H. S. Huh, and S. W. Lee, Hydrothermal synthesis of boehmite ( -AlOOH) nanoplatelets and nanowires: pH-controlled morphologies, Nanotechnology 18, 285608 (2007)ADSCrossRefGoogle Scholar
  33. 33.
    K. H. Hu, Y. K. Cai, G. Q. Shao, and X. L. Cui, Synthesis and photocatalytic properties of nano-MoS2/AlOOH composite, React. Kinet. Mech. Catal. 103(1), 153 (2011)CrossRefGoogle Scholar
  34. 34.
    J. X. Yang, J. J. Ma, and Y. W. Huang, Hydrothermal synthesis of monodisperse leaf-like boehmite nanosheets: Transformation from irregular to regular morphology, Frontier of Nanoscience and Technology, Vol. 694, 28 (2011)Google Scholar
  35. 35.
    Y. M. Sun, H. Wang, P. Li, X. Z. Duan, J. Xu, and Y. F. Han, Synthesis and identification of hierarchical g-AlOOH self-assembled by nanosheets with adjustable exposed facets, CrystEngComm 18(24), 4546 (2016)CrossRefGoogle Scholar
  36. 36.
    G. C. Li, L. L. Guan, Y. Q. Liu, and C. G. Liu, Template-free solvothermal synthesis of 3D hierarchical nanostructured boehmite assembled by nanosheets, J. Phys. Chem. Solids 73(9), 1055 (2012)ADSCrossRefGoogle Scholar
  37. 37.
    Y. X. Zhang, Y. J. Ye, X. B. Zhou, Z. L. Liu, G. P. Zhu, D. C. Li, and X. H. Li, Monodispersed hollow aluminosilica microsphere@hierarchical g-AlOOH deposited with or without Fe(OH)3 nanoparticles for efficient adsorption of organic pollutants, J. Mater. Chem. A 4(3), 838 (2016)CrossRefGoogle Scholar
  38. 38.
    R. W. Hicks and T. J. Pinnavaia, Nanoparticle assembly of mesoporous AlOOH (Boehmite), Chem. Mater. 15(1), 78 (2003)CrossRefGoogle Scholar
  39. 39.
    Y. Cai, H. H. Huang, L. Wang, X. J. Zhang, Y. W. Yuan, R. Li, H. Wan, and G. F. Guan, Facile synthesis of pure phase g-AlOOH and g-Al2O3 nanofibers in a recoverable ionic liquid via a low temperature route, RSC Adv. 5(127), 104884 (2015)CrossRefGoogle Scholar
  40. 40.
    X. Y. Chen, Z. H. Zhang, X. L. Li, and S. W. Lee, Controlled hydrothermal synthesis of colloidal boehmite (-AlOOH) nanorods and nanoflakes and their conversion into - Al2O3 nanocrystals, Solid State Commun. 145(7–8), 368 (2008)ADSCrossRefGoogle Scholar
  41. 41.
    S. Peng, X. J. Yang, D. Tian, and W. L. Deng, Chemically stable and mechanically durable superamphiphobic aluminum surface with a micro/nanoscale binary structure, ACS Appl. Mater. Inter. 6(17), 15188 (2014)CrossRefGoogle Scholar
  42. 42.
    S. Yamazoe, M. Naya, M. Shiota, T. Morikawa, A. Kubo, T. Tani, T. Hishiki, T. Horiuchi, M. Suematsu, and M. Kajimura, Large-area surface-enhanced Raman spectroscopy imaging of brain ischemia by gold nanoparticles grown on random nanoarrays of transparent boehmite, ACS Nano 8(6), 5622 (2014)CrossRefGoogle Scholar
  43. 43.
    Z. Xu, J. Yu, J. Low, and M. Jaroniec, Microemulsionassisted synthesis of mesoporous aluminum oxyhydroxide nanoflakes for efficient removal of gaseous formaldehyde, ACS Appl. Mater. Inter. 6(3), 2111 (2014)CrossRefGoogle Scholar
  44. 44.
    Z. J. Wang, Y. Tian, H. S. Fan, J. H. Gong, S. G. Yang, J. H. Ma, and J. Xu, Facile seed-assisted hydrothermal fabrication of g-AlOOH nanoflake films with superhydrophobicity, New J. Chem. 38(3), 1321 (2014)CrossRefGoogle Scholar
  45. 45.
    Y. L. Feng, W. C. Lu, L. M. Zhang, X. H. Bao, B. H. Yue, Y. Iv, and X. F. Shang, One-step synthesis of hierarchical cantaloupe-like AlOOH superstructures via a hydrothermal route, Cryst. Growth Des. 8(4), 1426 (2008)CrossRefGoogle Scholar
  46. 46.
    A. Alemi, Z. Hosseinpour, M. Dolatyari, and A. Bakhtiari, Boehmite (g-AlOOH) nanoparticles: Hydrothermal synthesis, characterization, pH-controlled morphologies, optical properties, and DFT calculations, Phys. Status Solidi B 249(6), 1264 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Chen Yang
    • 1
  • Ying Chen
    • 1
  • Dan Liu
    • 1
  • Jinfeng Wang
    • 1
  • Cheng Chen
    • 1
  • Jiemin Wang
    • 1
  • Ye Fan
    • 1
  • Shaoming Huang
    • 2
  • Weiwei Lei
    • 1
  1. 1.Institute for Frontier MaterialsDeakin UniversityGeelongAustralia
  2. 2.Nanomaterials & Chemistry Key LaboratoryWenzhou UniversityWenzhouChina

Personalised recommendations