Advertisement

Frontiers of Physics

, 13:130306 | Cite as

Robust general N user authentication scheme in a centralized quantum communication network via generalized GHZ states

  • Ahmed Farouk
  • J. Batle
  • M. Elhoseny
  • Mosayeb Naseri
  • Muzaffar Lone
  • Alex Fedorov
  • Majid Alkhambashi
  • Syed Hassan Ahmed
  • M. Abdel-Aty
Research Article

Abstract

Quantum communication provides an enormous advantage over its classical counterpart: security of communications based on the very principles of quantum mechanics. Researchers have proposed several approaches for user identity authentication via entanglement. Unfortunately, these protocols fail because an attacker can capture some of the particles in a transmitted sequence and send what is left to the receiver through a quantum channel. Subsequently, the attacker can restore some of the confidential messages, giving rise to the possibility of information leakage. Here we present a new robust General N user authentication protocol based on N-particle Greenberger–Horne–Zeilinger (GHZ) states, which makes eavesdropping detection more effective and secure, as compared to some current authentication protocols. The security analysis of our protocol for various kinds of attacks verifies that it is unconditionally secure, and that an attacker will not obtain any information about the transmitted key. Moreover, as the number of transferred key bits N becomes larger, while the number of users for transmitting the information is increased, the probability of effectively obtaining the transmitted authentication keys is reduced to zero.

Keywords

quantum communication quantum cryptography quantum authentication entanglement 

Notes

Acknowledgements

J. Batle acknowledges fruitful discussions with Joana Rosselló, Maria del Mar Batle and Regina Batle.

Supplementary material

11467_2017_717_MOESM1_ESM.pdf (2.1 mb)
Supplementary material, approximately 2121 KB.

References

  1. 1.
    C. H. Bennett and G. Brassard, Quantum cryptography: Public key distribution and coin tossing, Theor. Comput. Sci. 560, 7 (2014)MATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    M. Nielsen and I. Chuang, Quantum Computation and Quantum Information, Cambridge: Cambridge University Press, 2000MATHGoogle Scholar
  3. 3.
    G. H. Zeng, Quantum Cryptology, Beijing: Science Press, 2006Google Scholar
  4. 4.
    G. Assche, Quantum Cryptography and Secret-Key Distillation, Cambridge: Cambridge University Press, 2006MATHCrossRefGoogle Scholar
  5. 5.
    M. S. Sharbaf, Quantum Cryptography: A New Generation of Information Technology Security System, Sixth International Conference on Information Technology. Nevada, USA, IEEE, pp 1644–1648, April, 2009Google Scholar
  6. 6.
    W. K. Wootters and W. H. Zurek, A single quantum cannot be cloned, Nature 299(5886), 802 (1982)ADSMATHCrossRefGoogle Scholar
  7. 7.
    A. Poppe, M. Peev, and O. Maurhart, Outline of the SECOQC quantum-key distribution network in Vienna, Int. J. Quant. Inf. 06(02), 209 (2008)CrossRefGoogle Scholar
  8. 8.
    M. Peev, et al., The SECOQC quantum key distribution network in Vienna, New J. Phys. 11(075001), 1367 (2009)ADSGoogle Scholar
  9. 9.
    C. Elliott, Building the quantum network, New J. Phys. 4, 46 (2002)ADSCrossRefGoogle Scholar
  10. 10.
    C. Elliott, A. Colvin, D. Pearson, O. Pikalo, J. Schlafer, and H. Yeh, Current status of the DARPA quantum network, Quantum Information and Computation 5815, 138 (2005)Google Scholar
  11. 11.
    A. F. Metwaly, M. Z. Rashad, F. A. Omara, and A. A. Megahed, Architecture of multicast centralized key management scheme using quantum key distribution and classical symmetric encryption, Eur. Phys. J. Spec. Top. 223(8), 1711 (2014)CrossRefGoogle Scholar
  12. 12.
    A. Farouk, M. Zakaria, A. Megahed, and F. A. Omara, A generalized architecture of quantum secure direct communication for N disjointed users with authentication, Sci. Rep. 5(1), 16080 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    M. Naseri, M. A. Raji, M. R. Hantehzadeh, A. Farouk, A. Boochani, and S. Solaymani, A scheme for secure quantum communication network with authentication using GHZ-like states and cluster states controlled teleportation, Quantum Inform. Process. 14(11), 4279 (2015)MATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    K. Boström and T. Felbinger, Deterministic Secure Direct Communication Using Entanglement, Phys. Rev. Lett. 89(18), 187902 (2002)ADSCrossRefGoogle Scholar
  15. 15.
    F. Deng, G. Long, and X. Liu, Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block, Phys. Rev. A 68(4), 042317 (2003)ADSCrossRefGoogle Scholar
  16. 16.
    M. Lucamarini and S. Mancini, Secure deterministic communication without entanglement, Phys. Rev. Lett. 94(14), 140501 (2005)ADSCrossRefGoogle Scholar
  17. 17.
    A. Zhu, Y. Xia, Q. Fan, and S. Zhang, Secure direct communication based on secret transmitting order of particles, Phys. Rev. A 73(2), 022338 (2006)ADSCrossRefGoogle Scholar
  18. 18.
    H. Lee, J. Lim, and H. Yang, Quantum direct communication with authentication, Phys. Rev. A 73(4), 042305 (2006)ADSCrossRefGoogle Scholar
  19. 19.
    T. Wang, Q. Wen, and F. Zhu, Controlled quantum secure direct communication with quantum encryption, Int. J. Quant. Inf. 6, 543 (2008)MATHCrossRefGoogle Scholar
  20. 20.
    C. Wang, F. Deng, Y. Li, X. Liu, and G. Long, Quantum secure direct communication with high dimension quantum superdense coding, Phys. Rev. A 71(4), 044305 (2005)ADSCrossRefGoogle Scholar
  21. 21.
    T. Gao, F. L. Yan, and Z. X. Wang, A simultaneous quantum secure direct communication scheme between the central party and other M parties, Chin. Phys. Lett. 22(10), 2473 (2005)ADSCrossRefGoogle Scholar
  22. 22.
    C. Wang, F. Deng, and G. Long, Multi-step quantum secure direct communication using multi-particle Green–Horne–Zeilinger state, Opt. Commun. 253(1–3), 15 (2005)ADSCrossRefGoogle Scholar
  23. 23.
    J. Wang, Q. Zhang, and C. Tang, Quantum secure direct communication based on order rearrangement of single photons, Phys. Lett. A 358(4), 256 (2006)ADSMATHCrossRefGoogle Scholar
  24. 24.
    C. Qing-Yu, and L. Bai-Wen, Deterministic secure communication without using entanglement, Chin. Phys. Lett. 21(4), 601 (2004)ADSCrossRefGoogle Scholar
  25. 25.
    Q. Y. Cai, Eavesdropping on the two-way quantum communication protocols with invisible photons, Phys. Lett. A 351(1–2), 23 (2006)ADSMATHCrossRefGoogle Scholar
  26. 26.
    G. L. Long, F. Deng, C. Wang, X. Li, K. Wen, and W. Wang, Quantum secure direct communication and deterministic secure quantum communication, Front. Phys. China 2(3), 251 (2007)ADSCrossRefGoogle Scholar
  27. 27.
    G. Q. He, J. Zhu, and G. Zeng, Quantum secure communication using continuous variable EPR correlations, Phys. Rev. A 73, 1 (2006)Google Scholar
  28. 28.
    Y. Chang, C. Xu, S. Zhang, and L. Yan, Controlled quantum secure direct communication and authentication protocol based on five-particle cluster state and quantum one-time pad, Chin. Sci. Bull. 59(21), 2541 (2014)CrossRefGoogle Scholar
  29. 29.
    C. Yan, Z. Shi-Bin, and Y. Li-Li, A Bidirectional Quantum Secure Direct Communication Protocol Based on Five-Particle Cluster State, Chin. Phys. Lett. 30(9), 090301 (2013)CrossRefGoogle Scholar
  30. 30.
    W. Li, J. Chen, X. Wang, and C. Li, Quantum Secure Direct Communication Achieved by Using Multi-Entanglement, Int. J. Theor. Phys. 54(1), 100 (2015)MATHMathSciNetCrossRefGoogle Scholar
  31. 31.
    J. Wang, Q. Zhang, and C. J. Tang, Multiparty controlled quantum secure direct communication using Greenberger–Horne–Zeilinger state, Opt. Commun. 266(2), 732 (2006)ADSCrossRefGoogle Scholar
  32. 32.
    X.- M. Xiu, L. Dong, Y.- J. Gao, and F. Chi, Quantum secure direct communication using six-particle maximally entangled states and teleportation, Commum. Theor. Phys. 51(3), 429 (2009)ADSMATHMathSciNetCrossRefGoogle Scholar
  33. 33.
    P. Yadav, R. Srikanth, and A. Pathak, Twostep orthogonal-state-based protocol of quantum secure direct communication with the help of orderrearrangement technique, Quantum Inform. Process. 13(12), 2731 (2014)ADSMATHCrossRefGoogle Scholar
  34. 34.
    X. Li and H. Barnum, Quantum authentication using entangled states, Int. J. Found. Comput. Sci. 15(04), 609 (2004)MATHMathSciNetCrossRefGoogle Scholar
  35. 35.
    N. Zhou, G. Zeng, W. Zeng, and F. Zhu, Cross-center quantum identification scheme based on teleportation and entanglement swapping, Opt. Commun. 254(4–6), 380 (2005)ADSCrossRefGoogle Scholar
  36. 36.
    D. R. Kuhn, A quantum cryptographic protocol with detection of compromised server, Quantum Inf. Comput. 5(7), 551 (2005)MATHGoogle Scholar
  37. 37.
    X. Wen, Y. Liu, and N. Zhou, Secure quantum telephone, Opt. Commun. 275(1), 278 (2007)ADSCrossRefGoogle Scholar
  38. 38.
    M. Naseri, Eavesdropping on secure quantum telephone protocol with dishonest server, Opt. Commun. 282(16), 3375 (2009)ADSCrossRefGoogle Scholar
  39. 39.
    Y. Sun, Q. Y. Wen, F. Gao, and F. C. Zhu, Improving the security of secure quantum telephone against an attack with fake particles and local operations, Opt. Commun. 282(11), 2278 (2009)ADSCrossRefGoogle Scholar
  40. 40.
    D. Zhang and X. Li, Quantum authentication using orthogonal product states, in: Third International Conference on Natural Computation, ICNC 2007, Vol. 4, pp 608–612, IEEEGoogle Scholar
  41. 41.
    B. S. Shi, J. Li, J. M. Liu, X. F. Fan, and G. C. Guo, Quantum key distribution and quantum authentication based on entangled state, Phys. Lett. A 281(2–3), 83 (2001)ADSMATHMathSciNetCrossRefGoogle Scholar
  42. 42.
    T. Wei, C. W. Tsai, and T. Hwang, Comment on quantum key distribution and quantum authentication based on entangled state, Int. J. Theor. Phys. 50(9), 2703 (2011)MATHCrossRefGoogle Scholar
  43. 43.
    P. Huang, J. Zhu, Y. Lu, and G. H. Zeng, Quantum identity authentication using Gaussian-modulated squeezed states, Int. J. Quant. Inf. 9(2), 701 (2011)MATHCrossRefGoogle Scholar
  44. 44.
    C. W. Tsai, T. S. Wei, and T. Hwang, One-way quantum authenticated secure communication using rotation operation, Commum. Theor. Phys. 56(6), 1023 (2011)ADSMATHCrossRefGoogle Scholar
  45. 45.
    H. X. Ma, P. Huang, W. S. Bao, and G. H. Zeng, Continuous-variable quantum identity authentication based on quantum teleportation, Quantum Inform. Process. 15(6), 2605 (2016)ADSMATHMathSciNetCrossRefGoogle Scholar
  46. 46.
    N. Penghao, C. Yuan, and L. Chong, Quantum authentication scheme based on entanglement swapping, Int. J. Theor. Phys. 55(1), 302 (2016)MATHMathSciNetCrossRefGoogle Scholar
  47. 47.
    M. Naseri, Revisiting quantum authentication scheme based on entanglement swapping, Int. J. Theor. Phys. 55(5), 2428 (2016)MATHMathSciNetCrossRefGoogle Scholar
  48. 48.
    G. J. Simmons, Message Authentication without secrecy: A secure communications problem uniquely solvable by asymmetric encryption techniques, 12th IEEE Annual Electronics and Aerospace Conference, Washington, USA, IEEE, pp 661–662, December, 1979Google Scholar
  49. 49.
    G. J. Simmons, Authentication theory/coding theory, Advances in Cryptology–Proceedings of Crypto 84, Paris, France, 196, (pp 411–431), Heidelberg: Springer, 1984Google Scholar
  50. 50.
    A. S. Holevo, Statistical problems in quantum physics, in: Proceedings of the second Japan-USSR Symposium on probability theory, 330, 104–119 (1973)MATHMathSciNetCrossRefGoogle Scholar
  51. 51.
    A. S. Holevo, The capacity of the quantum channel with general signal states, IEEE Trans. Inf. Theory 44(1), 269 (1998)MATHMathSciNetCrossRefGoogle Scholar
  52. 52.
    A. K. Ekert, Quantum cryptography based on Bell’s theorem, Phys. Rev. Lett. 67(6), 661 (1991)ADSMATHMathSciNetCrossRefGoogle Scholar
  53. 53.
    C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels, Phys. Rev. Lett. 70(13), 1895 (1993)ADSMATHMathSciNetCrossRefGoogle Scholar
  54. 54.
    F. G. Deng and G. L. Long, Bidirectional quantum key distribution protocol with practical faint laser pulses, Phys. Rev. A 70(1), 012311 (2004)ADSCrossRefGoogle Scholar
  55. 55.
    N. Gisin and S. Massar, Optimal quantum cloning machines, Phys. Rev. Lett. 79(11), 2153 (1997)ADSCrossRefGoogle Scholar
  56. 56.
    A. Peres, Separability criterion for density matrices, Phys. Rev. Lett. 77(8), 1413 (1996)ADSMATHMathSciNetCrossRefGoogle Scholar
  57. 57.
    F. Giraldi and P. Grigolini, Quantum entanglement and entropy, Phys. Rev. A 64(3), 032310 (2001)ADSMathSciNetCrossRefGoogle Scholar
  58. 58.
    D. Boschi, S. Branca, F. De Martini, L. Hardy, and S. Popescu, Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein–Podolsky–Rosen channels, Phys. Rev. Lett. 80(6), 1121 (1998)ADSMATHMathSciNetCrossRefGoogle Scholar
  59. 59.
    M. Hillery, V. Bužek, and A. Berthiaume, Quantum secret sharing, Phys. Rev. A 59(3), 1829 (1999)ADSMATHMathSciNetCrossRefGoogle Scholar
  60. 60.
    M. A. Nielsen, Conditions for a class of entanglement transformations, Phys. Rev. Lett. 83(2), 436 (1999)ADSMathSciNetCrossRefGoogle Scholar
  61. 61.
    R. A. Bertlmann and A. Zeilinger (Eds.), Quantum (un) Speakables: From Bell to Quantum Information, Springer Science & Business Media 2013Google Scholar
  62. 62.
    A. Aspect, J. Dalibard, and G. Roger, Experimental test of Bell’s inequalities using time-varying analyzers, Phys. Rev. Lett. 49(25), 1804 (1982)ADSMathSciNetCrossRefGoogle Scholar
  63. 63.
    L. F. Wei, Y. X. Liu, M. J. Storcz, and F. Nori, Macroscopic Einstein–Podolsky–Rosen pairs in superconducting circuits, Phys. Rev. A 73(5), 052307 (2006)ADSCrossRefGoogle Scholar
  64. 64.
    J. S. Huang, C. H. Oh, and L. F. Wei, Testing tripartite Mermin inequalities by spectral joint measurements of qubits, Phys. Rev. A 83(6), 062108 (2011)ADSCrossRefGoogle Scholar
  65. 65.
    J. Uffink, Quadratic Bell inequalities as tests for multipartite entanglement, Phys. Rev. Lett. 88(23), 230406 (2002)ADSMathSciNetCrossRefGoogle Scholar
  66. 66.
    Z. Zhao, Y. A. Chen, A. N. Zhang, T. Yang, H. J. Briegel, and J. W. Pan, Experimental demonstration of five-photon entanglement and open-destination teleportation, Nature 430(6995), 54 (2004)ADSCrossRefGoogle Scholar
  67. 67.
    D. Leibfried, E. Knill, S. Seidelin, J. Britton, R. B. Blakestad, J. Chiaverini, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, R. Reichle, and D. J. Wineland, Creation of a six-atom “Schrödinger cat” state, Nature 438(7068), 639 (2005)ADSCrossRefGoogle Scholar
  68. 68.
    C. Y. Lu, X. Q. Zhou, O. Gühne, W. B. Gao, J. Zhang, Z. S. Yuan, A. Goebel, T. Yang, and J. W. Pan, Experimental entanglement of six photons in graph states, Nat. Phys. 3(2), 91 (2007)CrossRefGoogle Scholar
  69. 69.
    Y. Xia, P. Lu, and Y. Zeng, Effective protocol for preparation of N-photon Greenberger–Horne–Zeilinger states with conventional photon detectors, Quantum Inform. Process. 11(2), 605 (2012)CrossRefGoogle Scholar
  70. 70.
    S. Y. Hao, Y. Xia, J. Song, and N. B. An, One-step generation of multiatom Greenberger–Horne–Zeilinger states in separate cavities via adiabatic passage, Journal of the Optical Society of America B 30(2), 468 (2013)CrossRefGoogle Scholar
  71. 71.
    Y. F. Huang, B.H. Liu, L. Peng, Y.H. Li, L. Li, C.F. Li, and G.C. Guo, Experimental generation of an eightphoton Greenberger–Horne–Zeilinger state, Nat. Commun. 2, 546 (2011)CrossRefGoogle Scholar
  72. 72.
    A. Metwaly, M. Z. Rashad, F. A. Omara, and A. A. Megahed, Architecture of Point to Multipoint QKD Communication Systems (QKDP2MP). In 8th International Conference on Informatics and Systems (INFOS), Cairo, pp NW 25–31, IEEE, May, 2012Google Scholar
  73. 73.
    A. Farouk, F. Omara, M. Zakria, and A. Megahed, Secured IPsec multicast architecture based on quantum key distribution, in: The International Conference on Electrical and Bio-medical Engineering, Clean Energy and Green Computing, pp 38–47 (2015). The Society of Digital Information and Wireless Communication.Google Scholar
  74. 74.
    M. M. Wang, W. Wang, J. G. Chen, and A. Farouk, Secret sharing of a known arbitrary quantum state with noisy environment, Quantum Inform. Process. 14(11), 4211 (2015)ADSMATHMathSciNetCrossRefGoogle Scholar
  75. 75.
    M. Naseri, S. Heidari, M. Baghfalaki, N. Fatahi, R. Gheibi, J. Batle, A. Farouk, and A. Habibi, A new secure quantum watermarking scheme, Optik 139, 77 (2017)ADSCrossRefGoogle Scholar
  76. 76.
    J. Batle, O. Ciftja, M. Naseri, M. Ghoranneviss, A. Farouk, and M. Elhoseny, Equilibrium and uniform charge distribution of a classical two-dimensional system of point charges with hard-wall confinement, Phys. Scr. 92(5), 055801 (2017)ADSCrossRefGoogle Scholar
  77. 77.
    H. Geurdes, K. Nagata, T. Nakamura, and A. Farouk, A note on the possibility of incomplete theory, arXiv: 1704.00005 (2017)Google Scholar
  78. 78.
    J. Batle, A. Farouk, M. Alkhambashi, and S. Abdalla, Multipartite correlation degradation in amplitudedamping quantum channels, J. Korean Phys. Soc. 70(7), 666 (2017)ADSCrossRefGoogle Scholar
  79. 79.
    J. Batle, M. Naseri, M. Ghoranneviss, A. Farouk, M. Alkhambashi, and M. Elhoseny, Shareability of correlations in multiqubit states: Optimization of nonlocal monogamy inequalities, Phys. Rev. A 95(3), 032123 (2017)ADSCrossRefGoogle Scholar
  80. 80.
    J. Batle, A. Farouk, M. Alkhambashi, and S. Abdalla, Entanglement in the linear-chain Heisenberg antiferromagnet Cu(C4H4N2)(NO3)2, Eur. Phys. J. B 90(3), 49 (2017)ADSCrossRefGoogle Scholar
  81. 81.
    J. Batle, M. Alkhambashi, A. Farouk, M. Naseri, and M. Ghoranneviss, Multipartite non-locality and entanglement signatures of a field-induced quantum phase transition, Eur. Phys. J. B 90(2), 31 (2017)ADSCrossRefGoogle Scholar
  82. 82.
    K. Nagata, T. Nakamura, J. Batle, S. Abdalla, and A. Farouk, Boolean approach to dichotomic quantum measurement theories, J. Korean Phys. Soc. 70(3), 229 (2017)ADSCrossRefGoogle Scholar
  83. 83.
    M. Abdolmaleky, M. Naseri, J. Batle, A. Farouk, and L. H. Gong, Red–Green–Blue multi-channel quantum representation of digital images, Optik 128, 121 (2017)ADSCrossRefGoogle Scholar
  84. 84.
    A. Farouk, M. Elhoseny, J. Batle, M. Naseri, and A. E. Hassanien, A proposed architecture for key management schema in centralized quantum network, in: Handbook of Research on Machine Learning Innovations and Trends, pp 997–1021, IGI Global, 2017CrossRefGoogle Scholar
  85. 85.
    N. R. Zhou, J. F. Li, Z. B. Yu, L. H. Gong, and A. Farouk, New quantum dialogue protocol based on continuous-variable two-mode squeezed vacuum states, Quantum Inform. Process. 16(1), 4 (2017)ADSMATHCrossRefGoogle Scholar
  86. 86.
    J. Batle, M. Abutalib, S. Abdalla, and A. Farouk, Persistence of quantum correlations in a XY spin-chain environment, Eur. Phys. J. B 89(11), 247 (2016)ADSMATHCrossRefGoogle Scholar
  87. 87.
    J. Batle, M. Abutalib, S. Abdalla, and A. Farouk, Revival of Bell nonlocality across a quantum spin chain, Int. J. Quant. Inf. 14(07), 1650037 (2016)MATHCrossRefGoogle Scholar
  88. 88.
    J. Batle, C. R. Ooi, A. Farouk, M. Abutalib, and S. Abdalla, Do multipartite correlations speed up adiabatic quantum computation or quantum annealing? Quantum Inform. Process. 15(8), 3081 (2016)ADSMATHMathSciNetCrossRefGoogle Scholar
  89. 89.
    J. Batle, A. Bagdasaryan, A. Farouk, M. Abutalib, and S. Abdalla, Quantum correlations in two coupled superconducting charge qubits, Int. J. Mod. Phys. B 30(19), 1650123 (2016)ADSMATHMathSciNetCrossRefGoogle Scholar
  90. 90.
    J. Batle, C. R. Ooi, M. Abutalib, A. Farouk, and S. Abdalla, Quantum information approach to the azurite mineral frustrated quantum magnet, Quantum Inform. Process. 15(7), 2839 (2016)ADSMathSciNetCrossRefGoogle Scholar
  91. 91.
    J. Batle, C. R. Ooi, A. Farouk, and S. Abdalla, Nonlocality in pure and mixed n-qubit X states, Quantum Inform. Process. 15(4), 1553 (2016)ADSMATHMathSciNetCrossRefGoogle Scholar
  92. 92.
    J. Batle, C. R. Ooi, A. Farouk, M. Abutalib, and S. Abdalla, Do multipartite correlations speed up adiabatic quantum computation or quantum annealing? Quantum Inform. Process. 15(8), 3081 (2016)ADSMATHMathSciNetCrossRefGoogle Scholar
  93. 93.
    A. F. Metwaly, M. Z. Rashad, F. A. Omara, and A. A. Megahed, Architecture of multicast network based on quantum secret sharing and measurement, International Research Journal of Engineering and Technology 02(03), 2336 (2015)Google Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Ahmed Farouk
    • 1
  • J. Batle
    • 3
  • M. Elhoseny
    • 1
  • Mosayeb Naseri
    • 4
  • Muzaffar Lone
    • 5
  • Alex Fedorov
    • 6
  • Majid Alkhambashi
    • 7
  • Syed Hassan Ahmed
    • 8
  • M. Abdel-Aty
    • 2
  1. 1.Faculty of Computer and Information SciencesMansoura UniversityMansouraEgypt
  2. 2.Applied Science University, Bahrain & Mathematics Dept. Sohag UniversitySohagEgypt
  3. 3.Departament de FísicaUniversitat de les Illes BalearsPalma de Mallorca, Balearic IslandsSpain
  4. 4.Department of PhysicsKermanshah Branch, Islamic Azad UniversityKermanshahIran
  5. 5.Department of PhysicsUniversity of KashmirSrinagarIndia
  6. 6.Russian Quantum CenterSkolkovo, MoscowRussia
  7. 7.Information Technology DepartmentAl-Zahra College for WomenMuscatOman
  8. 8.School of Computer Science & EngineeringKyungpook National UniversityDaeguRepublic of Korea

Personalised recommendations