Advertisement

Frontiers of Physics

, 13:130303 | Cite as

Cavity control as a new quantum algorithms implementation treatment

  • M. AbuGhanem
  • A. H. Homid
  • M. Abdel-Aty
Research Article
  • 109 Downloads

Abstract

Based on recent experiments [Nature 449, 438 (2007) and Nature Physics 6, 777 (2010)], a new approach for realizing quantum gates for the design of quantum algorithms was developed. Accordingly, the operation times of such gates while functioning in algorithm applications depend on the number of photons present in their resonant cavities. Multi-qubit algorithms can be realized in systems in which the photon number is increased slightly over the qubit number. In addition, the time required for operation is considerably less than the dephasing and relaxation times of the systems. The contextual use of the photon number as a main control in the realization of any algorithm was demonstrated. The results indicate the possibility of a full integration into the realization of multi-qubit multiphoton states and its application in algorithm designs. Furthermore, this approach will lead to a successful implementation of these designs in future experiments.

Keywords

quantum computation quantum algorithms implementation cavity control 

Notes

Acknowledgements

The authors wish to thank Prof. Arthur R. McGurn from Western Michigan University for comments that redressed some of our presentation for this manuscript, we gratefully acknowledge the help provided during the editorial process.

References

  1. 1.
    A. M. Turing, On computable numbers, with an application to the Entscheidungsproblem, Proc. Lond. Math. Soc. s2–42(1), 230 (1937)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    R. P. Feynman, Simulating physics with computers, Int. J. Theor. Phys. 21(6–7), 467 (1982)MathSciNetCrossRefGoogle Scholar
  3. 3.
    P. Benioff, Quantum mechanical models of Turing machines that dissipate no energy, Phys. Rev. Lett. 48(23), 1581 (1982)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    D. Deutsch, Quantum theory, the Church-Turing Principle and the universal quantum computer, Proc. R. Soc. Lond. A 400(1818), 97 (1985)ADSMathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    D. Deutsch, Quantum computational networks, Proc. R. Soc. Lond. A 425(1868), 73 (1989)ADSMathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    D. P. DiVincenzo, Quantum computation, Science 270(5234), 255 (1995)ADSMathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    D. P. DiVincenzo, The physical implementation of quantum computation, Fortschr. Phys. 48(9–11), 771 (2000)CrossRefMATHGoogle Scholar
  8. 8.
    M. Nakahara, S. Kanemitsu, M. M. Salomaa, and S. Takagi (Eds.), Physical Realization of Quantum Computing: Are the DiVincenzo Criteria Fulfilled in 2004? Singapore: World Scientific, 2006Google Scholar
  9. 9.
    L. M. K. Vandersypen and I. L. Chuang, NMR techniques for quantum control and computation, Rev. Mod. Phys. 76(4), 1037 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, Trapping of neutral sodium atoms with radiation pressure, Phys. Rev. Lett. 59(23), 2631 (1987)ADSCrossRefGoogle Scholar
  11. 11.
    G. Wendin and V. S. Shumeiko, Superconducting quantum circuits, qubits and computing, arXiv: condmat/0508729 (2005)Google Scholar
  12. 12.
    B. D. Josephson, Possible new effects in superconductive tunnelling, Phys. Lett. 1(7), 251 (1962)ADSCrossRefMATHGoogle Scholar
  13. 13.
    B. D. Josephson, The discovery of tunnelling supercurrents, Rev. Mod. Phys. 46(2), 251 (1974)ADSCrossRefGoogle Scholar
  14. 14.
    U. Meirav, M. A. Kastner, and S. J. Wind, Singleelectron charging and periodic conductance resonances in GaAs nanostructures, Phys. Rev. Lett. 65(6), 771 (1990)ADSCrossRefGoogle Scholar
  15. 15.
    O. Gamel, H. Chan, G. Fleming, and K. B. Whaley, Fully quantum analysis of photosynthetic coherent energy absorption and transfer, Bull. Am. Phys. Soc. 62, 4 (2017)Google Scholar
  16. 16.
    B. Schumacher, Quantum coding, Phys. Rev. A 51(4), 2738 (1995)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    J. M. Martinis, Superconducting phase qubits, Quant. Inf. Proc. 8(2–3), 81 (2009)CrossRefGoogle Scholar
  18. 18.
    H. Eleuch, Entanglement and autocorrelation function in semiconductor microcavities, Int. J. Mod. Phys. B 24(29), 5653 (2010)ADSMathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    H. Eleuch, Autocorrelation function of microcavityemitting field in the linear regime, EPJD 48(1), 139 (2008)ADSCrossRefGoogle Scholar
  20. 20.
    E. A. Sete, A. A. Svidzinsky, H. Eleuch, Z. Yang, R. D. Nevels, and M. O. Scully, Correlated spontaneous emission on the Danube, J. Mod. Opt. 57(14–15), 1311 (2010)ADSCrossRefMATHGoogle Scholar
  21. 21.
    E. A. Sete, A. A. Svidzinsky, Y. V. Rostovtsev, H. Eleuch, P. K. Jha, S. Suckewer, and M. O. Scully, Using quantum coherence to generate gain in the XUV and X-ray: Gain-Swept superradiance and lasing without inversion, IEEE J. Sel. Top. Quantum Electron. 18(1), 541 (2012)CrossRefGoogle Scholar
  22. 22.
    H. Eleuch and R. Bennaceur, An optical soliton pair among absorbingthree-level atoms, J. Opt. A 5(5), 528 (2003)ADSCrossRefGoogle Scholar
  23. 23.
    M. Tinkham, Introduction to Superconductivity, 2nd Ed., New York: McGraw Hill, 1996Google Scholar
  24. 24.
    R. W. Simmonds, K. Lang, D. Hite, S. Nam, D. Pappas, and J. Martinis, Decoherence in Josephson Phase Qubits from Junction Resonators, Phys. Rev. Lett. 93(7), 077003 (2004)ADSCrossRefGoogle Scholar
  25. 25.
    M. A. Sillanpää, J. I. Park, and R. W. Simmonds, Coherent quantum state storage and transfer between two phase qubits via a resonant cavity, Nature 449, 438 (2007)ADSCrossRefGoogle Scholar
  26. 26.
    F. Altomare, J. I. Park, K. Cicak, M. A. Sillanpää, M. S. Allman, D. Li, A. Sirois, J. A. Strong, J. D. Whittaker, and R. W. Simmonds, Tripartite interactions between two phase qubits and a resonant cavity, Nat. Phys. 6(10), 777 (2010)CrossRefGoogle Scholar
  27. 27.
    O. Gamel and D. F. V. James, Time-averaged quantum dynamics and the validity of the effective Hamiltonian model, Phys. Rev. A 82, 052106 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge: Cambridge University Press, Ch. 4 and 6 (2000)MATHGoogle Scholar
  29. 29.
    H. F. Wang, X.Q. Shao, Y.F. Zhao, S. Zhang, and K.H. Yeon, Protocol and quantum circuit for implementing the N-bit discrete quantum Fourier transform in cavity QED, J. Phys. At. Mol. Opt. Phys. 43(6), 065503 (2010)ADSCrossRefGoogle Scholar
  30. 30.
    H. F. Wang, J. J. Wen, A. D. Zhu, S. Zhang, and K. H. Yeon, Deterministic CNOT gate and entanglement swapping for photonic qubits using a quantum-dot spin in a double-sided optical microcavity, New J. Phys. 13, 013021 (2011)ADSCrossRefMATHGoogle Scholar
  31. 31.
    H. F. Wang, X. X. Jiang, S. Zhang, and K. H. Yeon, Efficient quantum circuit for implementing discrete quantum Fourier transform in solid-state qubits, J. Phys. At. Mol. Opt. Phys. 44(11), 115502 (2011)ADSCrossRefGoogle Scholar
  32. 32.
    A. S. F. Obada, H. A. Hessian, A. B. A. Mohamed, and A. H. Homid, Efficient protocol of NN-bit discrete quantum Fourier transform via transmon qubits coupled to a resonator, Quant. Inf. Proc. 13(2), 475 (2014)CrossRefMATHGoogle Scholar
  33. 33.
    A. H. Homid, A. Abdel-Aty, M. Abdel-Aty, A. Badawi, and A. S. F. Obada, Efficient realization of quantum search algorithm using quantum annealing processor with dissipation, J. Opt. Soc. Am. B 32(9), 2025 (2015)ADSCrossRefGoogle Scholar
  34. 34.
    D. Deutsch and R. Jozsa, Rapid solution of problems by quantum computation, Proc. R. Soc. Lond. A 439(1907), 553 (1992)ADSMathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    D. R. Simon, On the power of quantum computation, Proc. 35th IEEE Symp. Found. Comp. Sci., Santa Fe, NM 116–123 (1994)Google Scholar
  36. 36.
    D. R. Simon, On the power of quantum computation, SIAM J. Comput. 26(5), 1474 (1997)MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    B. C. Sanders and G. J. Milburn, Optimal quantum measurements for phase estimation, Phys. Rev. Lett. 75(16), 2944 (1995)ADSCrossRefGoogle Scholar
  38. 38.
    P. Shor, Discrete logarithms and factoring, Proc. 35th Ann. Symp. Found.Comp. Sci. 124 (1994)Google Scholar
  39. 39.
    P. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM J. Comput. 26(5), 1484 (1997)MathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    O. Manasreh, Semiconductor Heterojunctions and Nanostructures, New York: McGraw-Hill Profes-sional, 2005Google Scholar
  41. 41.
    R. D. Levine, Quantum Mechanics of Molecular Rate Processes, New York: Dover Publications, 1999MATHGoogle Scholar
  42. 42.
    N. Froman and P. O. Froman, JWKB Approximation, Amsterdam: North-Holland, Amsterdam, 1965MATHGoogle Scholar
  43. 43.
    H. Eleuch, Y. V. Rostovtsev, and M. O. Scully, New analytic solution of Schrödinger’s equation, EPL (Europhys. Lett.) 89(5), 50004 (2010)ADSCrossRefGoogle Scholar
  44. 44.
    J. Q. You and F. Nori, Superconducting circuits and quantum information, Phys. Today 58(11), 42 (2005)CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany 2018

Authors and Affiliations

  1. 1.University of Science and Technology, Zewail City of Science and TechnologyGizaEgypt
  2. 2.Department of Mathematics, Faculty of ScienceAin-Shams UniversityCairoEgypt
  3. 3.Faculty of ScienceAl-Azhar UniversityAssiutEgypt

Personalised recommendations