Frontiers of Physics

, 12:128702 | Cite as

Regulation of 1, 4, 5-triphosphate receptor channel gating dynamics by mutant presenilin in Alzheimer’s disease cells

  • Fang Wei
  • Xiang Li
  • Meichun Cai
  • Yanping Liu
  • Peter Jung
  • Jianwei Shuai
Research article
Part of the following topical collections:
  1. Soft-Matter Physics and Complex Systems


In neurons of patients with Alzheimer’s disease, the intracellular Ca2+ concentration is increased by its release from the endoplasmic reticulum via the inositol 1, 4, 5-triphosphate receptor (IP3R). In this paper, we discuss the IP3R gating dynamics in familial Alzheimer’s disease (FAD) cells induced with presenilin mutation PS1. By fitting the parameters of an IP3R channel model to experimental data of the open probability, the mean open time and the mean closed time of IP3R channels, in control cells and FAD mutant cells, we suggest that the interaction of presenilin mutation PS1 with IP3R channels leads the decrease in the unbinding rates of IP3 and the activating Ca2+ from IP3Rs. As a result, the increased affinities of IP3 and activating Ca2+ for IP3R channels induce the increase in the Ca2+ signal in FAD mutant cells. Specifically, the PS1 mutation decreases the IP3 dissociation rate of IP3R channels significantly in FAD mutant cells. Our results suggest possible novel targets for FAD therapeutic intervention.


Ca2+ signal channel neuron Alzheimer’s disease 



We acknowledge support from the National Natural Science Foundation of China (Grant Nos. 31370830 and 11675134), the 111 Project (Grant No. B16029), and the China Postdoctoral Science Foundation (Grant No. 2016M602071).


  1. 1.
    M. Hutton and J. Hardy, The presenilins and Alzheimer’s disease, Hum. Mol. Genet. 6(10), 1639 (1997)CrossRefGoogle Scholar
  2. 2.
    J. Hardy, A hundred years of Alzheimer’s disease research, Neuron 52(1), 3 (2006)CrossRefGoogle Scholar
  3. 3.
    F. M. LaFerla and S. Oddo, Alzheimer’s disease: Abeta, tau and synaptic dysfunction, Trends Mol. Med. 11(4), 170 (2005)CrossRefGoogle Scholar
  4. 4.
    M. P. Mattson, Pathways towards and away from Alzheimer’s disease, Nature 430(7000), 631 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    C. Haass and D. J. Selkoe, Soluble protein oligomers in neurodegeneration: Lessons from the Alzheimer’s amyloid beta-peptide, Nat. Rev. Mol. Cell Biol. 8(2), 101 (2007)CrossRefGoogle Scholar
  6. 6.
    J. Hardy and D. J. Selkoe, The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics, Science 297(5580), 353 (2002)ADSCrossRefGoogle Scholar
  7. 7.
    F. M. LaFerla, Calcium dyshomeostasis and intracellular signalling in Alzheimer’s disease, Nat. Rev. Neurosci. 3(11), 862 (2002)CrossRefGoogle Scholar
  8. 8.
    I. F. Smith, K. N. Green, and F. M. LaFerla, Calcium dysregulation in Alzheimer’s disease: Recent advances gained from genetically modified animals, Cell Calcium 38(3–4), 427 (2005)CrossRefGoogle Scholar
  9. 9.
    J. Herms, I. Schneider, I. Dewachter, N. Caluwaerts, H. Kretzschmar, and F. Van Leuven, Capacitive calcium entry is directly attenuated by mutant presenilin-1, independent of the expression of the amyloid precursor protein, J. Biol. Chem. 278(4), 2484 (2003)CrossRefGoogle Scholar
  10. 10.
    M. A. Leissring, B. A. Paul, I. Parker, C. W. Cotman, and F. M. LaFerla, Alzheimer’s presenilin-1 mutation potentiates inositol 1, 4, 5-trisphosphate-mediated calcium signaling in Xenopus oocytes, J. Neurochem. 72(3), 1061 (1999)CrossRefGoogle Scholar
  11. 11.
    I. F. Smith, B. Hitt, K. N. Green, S. Oddo, and F. M. LaFerla, Enhanced caffeine-induced Ca2+ release in the 3xTg-AD mouse model of Alzheimer’s disease, J. Neurochem. 94(6), 1711 (2005)CrossRefGoogle Scholar
  12. 12.
    G. E. Stutzmann, Calcium dysregulation, IP3 signaling, and Alzheimer’s disease, Neuroscientist 11(2), 110 (2005)CrossRefGoogle Scholar
  13. 13.
    G. E. Stutzmann, A. Caccamo, F. M. LaFerla, and I. Parker, Dysregulated IP3 signaling in cortical neurons of knock-in mice expressing an Alzheimer’s-linked mutation in presenilin1 results in exaggerated Ca2+ signals and altered membrane excitability, J. Neurosci. 24(2), 508 (2004)CrossRefGoogle Scholar
  14. 14.
    J. K. Foskett, C. White, K. H. Cheung, and D. O. D. Mak, Inositol trisphosphate receptor Ca2+ release channels, Physiol. Rev. 87(2), 593 (2007)CrossRefGoogle Scholar
  15. 15.
    M. J. Berridge, M. D. Bootman, and H. L. Roderick, Calcium signaling: Dynamics, homeostasis and remodeling, Nat. Rev. Mol. Cell Biol. 4(7), 517 (2003)CrossRefGoogle Scholar
  16. 16.
    K. N. Green, A. Demuro, Y. Akbari, B. D. Hitt, I. F. Smith, I. Parker, and F. M. LaFerla, SERCA pump activity is physiologically regulated by presenilin and regulates amyloid beta production, J. Cell Biol. 181(7), 1107 (2008)CrossRefGoogle Scholar
  17. 17.
    S. Chakroborty, I. Goussakov, M. B. Miller, and G. E. Stutzmann, Deviant ryanodine receptor-mediated calcium release resets synaptic homeostasis in presymptomatic 3xTg-AD mice, J. Neurosci. 29(30), 9458 (2009)CrossRefGoogle Scholar
  18. 18.
    G. E. Stutzmann, I. Smith, A. Caccamo, S. Oddo, F. M. Laferla, and I. Parker, Enhanced ryanodine receptor recruitment contributes to Ca2+ disruptions in young, adult, and aged Alzheimer’s disease mice, J. Neurosci. 26(19), 5180 (2006)CrossRefGoogle Scholar
  19. 19.
    H. Qi and J. Shuai, Alzheimer’s disease via enhanced calcium signaling caused by the decrease of endoplasmic reticulum–mitochondrial distance, Med. Hypotheses. 89, 28 (2016)CrossRefGoogle Scholar
  20. 20.
    H. Qi, L. Li, and J. Shuai, Optimal microdomain crosstalk between endoplasmic reticulum and mitochondria for Ca2+ oscillations, Sci. Rep. 5, 7984 (2015)ADSCrossRefGoogle Scholar
  21. 21.
    N. Hirashima, R. Etcheberrigaray, S. Bergamaschi, M. Racchi, F. Battaini, G. Binetti, S. Govoni, and D. L. Alkon, Calcium responses in human fibroblasts: a diagnostic molecular profile for Alzheimer’s disease, Neurobiol. Aging. 17(4), 549 (1996)CrossRefGoogle Scholar
  22. 22.
    E. Ito, K. Oka, R. Etcheberrigaray, T. J. Nelson, D. L. McPhie, B. Tofel-Grehl, G. E. Gibson, and D. L. Alkon, Internal Ca2+ mobilization is altered in fibroblasts from patients with Alzheimer disease, Proc. Natl. Acad. Sci. USA 91(2), 534 (1994)ADSCrossRefGoogle Scholar
  23. 23.
    K. H. Cheung, D. Shineman, M. Muller, C. Cardenas, L. Mei, J. Yang, T. Tomita, T. Iwatsubo, V. M. Lee, and J. K. Foskett, Mechanism of Ca2+ disruption in Alzheimer’s disease by presenilin regulation of InsP3 receptor channel gating, Neuron. 58(6), 871 (2008)CrossRefGoogle Scholar
  24. 24.
    K. H. Cheung, L. Mei, D. O. D. Mak, I. Hayashi, T. Iwatsubo, D. E. Kang, and J. K. Foskett, Gain-offunction enhancement of InsP3 receptor modal gating by familial Alzheimer’s disease-linked presenilin mutants in humancells and mouse neurons, Sci. Signal. 3(114), ra22 (2010)CrossRefGoogle Scholar
  25. 25.
    G. W. De Young, and J. Keizer, A single-pool inositol 1, 4, 5-trisphosphate-receptor-based model for agonist-stimulated oscillations in Ca2+ concentration, Proc. Natl. Acad. Sci. USA 89(20), 9895 (1992)ADSCrossRefGoogle Scholar
  26. 26.
    J. Sneyd and J. Dufour, A dynamic model of the type-2 inositol trisphosphate receptor, Proc. Natl. Acad. Sci. USA 99(4), 2398 (2002)ADSCrossRefGoogle Scholar
  27. 27.
    D. O. D. Mak, S. M. J. McBride, and J. K. Foskett, Spontaneous channel activity of the inositol 1, 4, 5- trisphosphate (InsP3) receptor (InsP3R): Application of allosteric modeling to calcium and InsP3 regulation of InsP3R single-channel gating, J. Gen. Physiol. 122(5), 583 (2003)CrossRefGoogle Scholar
  28. 28.
    J. Shuai, J. E. Pearson, J. K. Foskett, D. O. D. Mak, and I. Parker, A kinetic model of single and clustered IP3 receptors in the absence of Ca2+ feedback, Biophys. J. 93(4), 1151 (2007)ADSCrossRefGoogle Scholar
  29. 29.
    J. W. Shuai, D. P. Yang, J. E. Pearson, and S. Rüdiger, An investigation of models of the IP3R channel in Xenopus oocyte, Chaos 19(3), 037105 (2009)ADSCrossRefGoogle Scholar
  30. 30.
    G. Ullah, D. O. Daniel Mak, and J. E. Pearson, A datadriven model of a modal gated ion channel: The inositol 1, 4, 5-trisphosphate receptor in insect Sf9 cells, J. Gen. Physiol. 140(2), 159 (2012)CrossRefGoogle Scholar
  31. 31.
    B. A. Bicknell, and G. J. Goodhill, Emergence of ion channel modal gating from independent subunit kinetics, Proc. Natl. Acad. Sci. USA 113(36), E5288 (2016)CrossRefGoogle Scholar
  32. 32.
    L. Ionescu, C. White, K. H. Cheung, J. Shuai, I. Parker, J. E. Pearson, J. K. Foskett, and D. O. D. Mak, Mode switching is the major mechanism of ligand regulation of InsP3 receptor calcium release channels, J. Gen. Physiol. 130(6), 631 (2007)CrossRefGoogle Scholar
  33. 33.
    D. O. D. Mak, J. E. Pearson, K. P. C. Loong, S. Datta, M. Fernández-Mongil, and J. K. Foskett, Rapid ligand-regulated gating kinetics of single inositol 1, 4, 5-trisphosphate receptor Ca2+ release channels, EMBO Rep. 8(11), 1044 (2007)CrossRefGoogle Scholar
  34. 34.
    G. Ullah, A. Demuro, I. Parker, and J. E. Pearson, Analyzing and modeling the kinetics of amyloid beta pores associated with Alzheimer’s disease pathology, PLoS One 10(9), e0137357 (2015)CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Fang Wei
    • 1
  • Xiang Li
    • 2
  • Meichun Cai
    • 1
  • Yanping Liu
    • 1
  • Peter Jung
    • 3
  • Jianwei Shuai
    • 1
    • 2
    • 4
  1. 1.Department of PhysicsXiamen UniversityXiamenChina
  2. 2.State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life SciencesXiamen UniversityXiamenChina
  3. 3.Department of Physics and Astronomy and Quantitative Biology InstituteOhio UniversityAthensUSA
  4. 4.Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials ResearchXiamen UniversityXiamenChina

Personalised recommendations