Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Spin in the extended electron model

Abstract

It has been found that a model of extended electrons is more suited to describe theoretical simulations and experimental results obtained via scanning tunnelling microscopes, but while the dynamic properties are easily incorporated, magnetic properties, and in particular electron spin properties pose a problem due to their conceived isotropy in the absence of measurement. The spin of an electron reacts with a magnetic field and thus has the properties of a vector. However, electron spin is also isotropic, suggesting that it does not have the properties of a vector. This central conflict in the description of an electron’s spin, we believe, is the root of many of the paradoxical properties measured and postulated for quantum spin particles. Exploiting a model in which the electron spin is described consistently in real three-dimensional space–an extended electron model–we demonstrate that spin may be described by a vector and still maintain its isotropy. In this framework, we re-evaluate the Stern–Gerlach experiments, the Einstein–Podolsky–Rosen experiments, and the effect of consecutive measurements and find in all cases a fairly intuitive explanation.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    J. D. Jackson, Classical Electrodynamics, Wiley, 1999

  2. 2.

    R. Eisberg, R. Resnick, and J. Brown, Quantum physics of atoms, molecules, solids, nuclei, and particles, Phys. Today 39(3), 110 (1986)

  3. 3.

    A. A. Rangwala and A. S. Mahajan, Electricity and Magnetism, McGraw Hill Education, 2004

  4. 4.

    W. Gerlach and O. Stern, Der experimentelle nachweis der richtungsquantelung im magnetfeld, Zeitschrift für Physik A Hadrons and Nuclei, 9(1), 349 (1922)

  5. 5.

    C. E. Burkhardt and J. J. Leventhal, Foundations of Quantum Physics, Springer Science & Business Media, 2008

  6. 6.

    K.-H. Rieder, G. Meyer, S.-W. Hla, F. Moresco, K. F. Braun, K. Morgenstern, J. Repp, S. Foelsch, and L. Bartels, The scanning tunnelling microscope as an operative tool: Doing physics and chemistry with single atoms and molecules, Philos. Trans. A Math. Phys. Eng. Sci. 362(1819), 1207 (2004)

  7. 7.

    W. A. Hofer, Heisenberg, uncertainty, and the scanning tunneling microscope, Front. Phys. 7(2), 218 (2012)

  8. 8.

    W. A. Hofer, Unconventional approach to orbital-free density functional theory derived from a model of extended electrons, Found. Phys. 41(4), 754 (2011)

  9. 9.

    W. A. Hofer, Elements of physics for the 21st century, J. Phys.: Conf. Ser. 504, 012014 (2014)

  10. 10.

    D. Hestenes and G. Sobczyk, Clifford Algebra to Geometric Calculus: A Unified Language for Mathematics and Physics, Vol. 5, Springer Science & Business Media, 2012

  11. 11.

    S. Gull, A. Lasenby, and C. Doran, Imaginary numbers are not real: The geometric algebra of spacetime, Found. Phys. 23(9), 1175 (1993)

  12. 12.

    G. Benenti, G. Strini, and G. Casati, Principles of Quantum Computation and Information, World Scientific, 2004

  13. 13.

    G. C. Ghirardi, A. Rimini, and T. Weber, Unified dynamics for microscopic and macroscopic systems, Phys. Rev. D 34(2), 470 (1986)

  14. 14.

    R. Penrose, On gravity’s role in quantum state reduction, Gen. Relativ. Gravit. 28(5), 581 (1996)

  15. 15.

    W. Heisenberg, Language and Reality in Modern Physics, 1958

  16. 16.

    G. C. Knee, K. Kakuyanagi, M.-C. Yeh, Y. Matsuzaki, H. Toida, H. Yamaguchi, S. Saito, A. J. Leggett, and W. J. Munro, A strict experimental test of macroscopic realism in a superconducting flux qubit, arXiv: 1601.03728 (2016)

  17. 17.

    L. de Broglie, Research on the theory of quanta, Ann. Phys. 10, 22 (1925)

  18. 18.

    E. Schrödinger, An undulatory theory of the mechanics of atoms and molecules, Phys. Rev. 28(6), 1049 (1926)

  19. 19.

    D. Bohm, A suggested interpretation of the quantum theory in terms of “hidden” variables (I), Phys. Rev. 85(2), 166 (1952)

  20. 20.

    D. Bohm, A suggested interpretation of the quantum theory in terms of “hidden” variables (II), Phys. Rev. 85(2), 180 (1952)

  21. 21.

    J. S. Bell, On the problem of hidden variables in quantum mechanics, Rev. Mod. Phys. 38(3), 447 (1966)

  22. 22.

    H. Everett, “Relative state” formulation of quantum mechanics, Rev. Mod. Phys. 29(3), 454 (1957)

  23. 23.

    G. Hooft, The free-will postulate in quantum mechanics, arXiv: quant-ph/0701097 (2007)

  24. 24.

    G. Hooft, Entangled quantum states in a local deterministic theory, arXiv: 0908.3408 (2009)

  25. 25.

    O. C. de Beauregard, Time symmetry and interpretation of quantum mechanics, Found. Phys. 6(5), 539 (1976)

  26. 26.

    P. Dowe, A defense of backwards in time causation models in quantum mechanics, Synthese 112(2), 233 (1997)

  27. 27.

    E. Santos, The failure to perform a loophole-free test of Bell’s inequality supports local realism, Found. Phys. 34(11), 1643 (2004)

  28. 28.

    N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S. Wehner, Bell nonlocality, Rev. Mod. Phys. 86(2), 419 (2014)

  29. 29.

    W. A. Hofer, Solving the Einstein–Podolsky–Rosen puzzle: The origin of non-locality in Aspect-type experiments, Front. Phys. 7(5), 504 (2012)

  30. 30.

    C. Doran, A. Lasenby, and S. Gull, States and operators in the spacetime algebra, Found. Phys. 23(9), 1239 (1993)

  31. 31.

    A. Einstein, B. Podolsky, and N. Rosen, Can quantummechanical description of physical reality be considered complete? Phys. Rev. 47(10), 777 (1935)

  32. 32.

    A. Einstein, Physics and reality, Journal of the Franklin Institute, 221(3), 349 (1936)

  33. 33.

    B. Thaller, Advanced Visual Quantum Mechanics, Springer Science & Business Media, 2005

  34. 34.

    B. Wittmann, S. Ramelow, F. Steinlechner, N. K. Langford, N. Brunner, H. M. Wiseman, R. Ursin, and A. Zeilinger, Loophole-free Einstein–Podolsky–Rosen experiment via quantum steering, New J. Phys. 14(5), 053030 (2012)

  35. 35.

    J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, Proposed experiment to test local hidden variable theories, Phys. Rev. Lett. 23(15), 880 (1969)

  36. 36.

    L. de Broglie, Wave mechanics and the atomic structure of matter and of radiation, J. Phys. Radium 8, 225 (1927)

Download references

Acknowledgments

The authors acknowledge EPSRC funding for the UKCP consortium, grant No. EP/K013610/1.

Author information

Correspondence to Thomas Pope.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pope, T., Hofer, W. Spin in the extended electron model. Front. Phys. 12, 128503 (2017). https://doi.org/10.1007/s11467-017-0669-7

Download citation

Keywords

  • spin
  • extended electron model
  • geometric algebra
  • Stern–Gerlach experiment
  • Einstein–Podolsky–Rosen
  • magnetism