Frontiers of Physics

, 12:127801 | Cite as

Silicon-erbium ytterbium silicate nanowire waveguides with optimized optical gain

  • Xiao-Xia Wang
  • Wei-Hao Zheng
  • Qing-Lin Zhang
  • Xiao-Li Zhu
  • Hong Zhou
  • Xiu-Juan Zhuang
  • An-Lian Pan
  • Xiang-Feng Duan
Research Article

Abstract

Single-crystal erbium silicate nanowires have attracted considerable attention because of their high optical gain. In this work, we report the controlled synthesis of silicon-erbium ytterbium silicate core-shell nanowires and fine-tuning the erbium mole fraction in the shell from x = 0:3 to x = 1:0, which corresponds to changing the erbium concentration from 4:8 × 1021 to 1:6 × 1022 cm-3. By controlling and properly optimizing the composition of erbium and ytterbium in the nanowires, we can effectively suppress upconversion photoluminescence while simultaneously enhancing near-infrared emission. The composition-optimized nanowires have very long photoluminescence lifetimes and large emission cross-sections, which contribute to the high optical gain that we observed. We suspended these concentration-optimized nanowires in the air to measure and analyze their propagation loss and optical gain in the near-infrared communication band. Through systematic measurements using wires with different core sizes, we obtained a maximum net gain of 20±8 dB·mm-1, which occurs at a wavelength of 1534 nm, for a nanowire with a diameter of 600 nm and a silicon core diameter of 300 nm.

Keywords

erbium ytterbium silicate nanowire erbium concentration gain 

Notes

Acknowledgements

The authors are grateful to the National Natural Science Foundation of China (Grant Nos. 11374092, 61474040, 61574054, 61635001, and 61505051), the National Basic Research Program of China (Grant No. 2012CB933703), and the Aid Program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province, the Hunan Provincial Science and Technology Department (Grant Nos. 2014FJ2001 and 2014GK3015).

References

  1. 1.
    F. Priolo, T. Gregorkiewicz, M. Galli, and T. F. Krauss, Silicon nanostructures for photonics and photovoltaics, Nat. Nanotechnol. 9(1), 19 (2014)ADSCrossRefGoogle Scholar
  2. 2.
    N. Liu, W. Y. Li, M. Pasta, and Y. Cui, Nanomaterials for electrochemical energy storage, Front. Phys. 9(3), 323 (2014)CrossRefGoogle Scholar
  3. 3.
    R. L. Savio, M. Galli, M. Liscidini, L. C. Andreani, G. Franzò, F. Iacona, M. Miritello, A. Irrera, D. Sanfilippo, A. Piana, and F. Priolo, Photonic crystal light emitting diode based on Er and Si nanoclusters co-doped slot waveguide, Appl. Phys. Lett. 104, 121107 (2014)ADSCrossRefGoogle Scholar
  4. 4.
    R. M. Guo, X. J. Wang, K. Zang, B. Wang, L. Wang, L. Gao, and Z. Zhou, Optical amplification in Er/Yb silicate strip loaded waveguide, Appl. Phys. Lett. 99(16), 161115 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    N. P. Dasgupta and P. D. Yang, Semiconductor nanowires for photovoltaic and photoelectrochemical energy conversion, Front. Phys. 9(3), 289 (2014)CrossRefGoogle Scholar
  6. 6.
    H. S. Han, S. Y. Seo, J. H. Shin, and N. Park, Coefficient determination related to optical gain in erbiumdoped silicon-rich silicon oxide waveguide amplifier, Appl. Phys. Lett. 81(20), 3720 (2002)ADSCrossRefGoogle Scholar
  7. 7.
    Lee, J. H. Shin, and N. Park, Optical gain at 1.5 μm in nanocrystal Si sensitized, Er-doped silica waveguide using top-pumping 470 nm LED, J. Lightwave Technol. 23, 19 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    M. Miritello, R. Lo Savio, F. Iacona, G. Franzò, A. Irrera, A. M. Piro, C. Bongiorno, and F. Priolo, Efficient luminescence and energy transfer in erbium silicate thin films, Adv. Mater. 19(12), 1582 (2007)CrossRefGoogle Scholar
  9. 9.
    H. Isshiki, M. J. A. de Dood, A. Polman, and T. Kimura, Self-assembled infrared-luminescent Er–Si–O crystallites on silicon, Appl. Phys. Lett. 85, 4343 (2004)ADSCrossRefGoogle Scholar
  10. 10.
    H. J. Choi, J. H. Shin, K. Suh, H. K. Seong, H. C. Han, and J. C. Lee, Self-organized growth of Si/Silica/Er2Si2O7 core-shell nanowire heterostructures and their luminescence, Nano Lett. 5(12), 2432 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    A. L. Pan, L. J. Yin, Z. C. Liu, M. H. Sun, R. B. Liu, P. L. Nichols, Y. G. Wang, and C. Z. Ning, Single-crystal erbium chloride silicate nanowires as a Si-compatible light emission material in communication wavelength, Opt. Mater. Express 1(7), 1202 (2011)CrossRefGoogle Scholar
  12. 12.
    X. J. Wang, S. Wang, and Z. Zhou, Low threshold ErxYb(Y)2xSiO5 nanowire waveguide amplifier, Appl. Opt. 54(9), 2501 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    L. Yin, H. Ning, S. Turkdogan, Z. Liu, P. L. Nichols, and C. Z. Ning, Long lifetime, high density single-crystal erbium compound nanowires as a high optical gain material, Appl. Phys. Lett. 100(24), 241905 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    L. Yin, D. Shelhammer, G. Zhao, Z. Liu, and C. Z. Ning, Erbium concentration control and optimization in erbium yttrium chloride silicate single crystal nanowires as a high gain material, Appl. Phys. Lett. 103(12), 121902 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    C. P. Michael, H. B. Yuen, V. A. Sabnis, T. J. Johnson, R. Sewell, R. Smith, A. Jamora, A. Clark, S. Semans, P. B. Atanackovic, and O. Painter, Growth, processing, and optical properties of epitaxial Er2O3 on silicon, Opt. Express 16(24), 19649 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    X. J. Wang, T. Nakajima, H. Isshiki, and T. Kimura, Fabrication and characterization of Er silicates on SiO2/Si substrates, Appl. Phys. Lett. 95(4), 041906 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    X. J. Wang, B. Wang, L. Wang, R. M. Guo, H. Isshiki, T. Kimura, and Z. Zhou, Extraordinary infrared photoluminescence efficiency of Er0.1Yb1.9SiO5films on SiO2/Si substrates, Appl. Phys. Lett. 98(7), 071903 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    X. J. Wang, G. Yuan, H. Isshiki, T. Kimura, and Z. Zhou, Photoluminescence enhancement and high gain amplification of ErxY2xSiO5 waveguide, J. Appl. Phys. 108(1), 013506 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    S. A. Dimitri Geskus, S. Aravazhi, S. M. García-Blanco, and M. Pollnau, Giant optical gain in a rare-earth-iondoped microstructure, Adv. Mater. 24, OP19 (2012)Google Scholar
  20. 20.
    X. X. Wang, X. J. Zhuang, S. Yang, Y. Chen, Q. L. Zhang, X. L. Zhu, H. Zhou, P. F. Guo, J. W. Liang, Y. Huang, A. L. Pan, and X. F. Duan, High gain submicrometer optical amplifier at near-infrared communication band, Phys. Rev. Lett. 115(2), 027403 (2015)ADSCrossRefGoogle Scholar
  21. 21.
    B. Wang, R. M. Guo, X. J. Wang, L. Wang, and Z. Zhou, Composition dependence of the Yb-participated strong up-conversions in polycrystalline ErYb silicate, Opt. Mater. 34(8), 1289 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    P. Cardile, M. Miritello, and F. Priolo, Energy transfer mechanisms in Er-Yb-Y disilicate thin films, Appl. Phys. Lett. 100(25), 251913 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    M. Miritello, P. Cardile, R. Lo Savio, and F. Priolo Energy transfer and enhanced 1540 nm emission in Erbium-Ytterbium disilicate thin films, Opt. Express. 19(21), 20761 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    W. J. Miniscalco, Erbium-doped glasses for fiber amplifiers at 1500 nm, J. Lightwave Technol. 9(2), 234 (1991)ADSCrossRefGoogle Scholar
  25. 25.
    F. D. Patel, S. DiCarolis, P. Lum, S. Venkatesh, and J. N. Miller, A compact high-performance optical waveguide amplifier, IEEE Photonics Technol. Lett. 16(12), 2607 (2004)ADSCrossRefGoogle Scholar
  26. 26.
    Z. C. Liu, G. J. Zhao, L. J. Yin, and C. Z. Ning, Demonstration of Net Gain in an Erbium Chloride Silicate Single Nanowire Waveguide, Proceeding of Conference on Lasers and Electro-Optics: Science and Innovations, June 2014, San Jose, SM4H.4 (2014)CrossRefGoogle Scholar
  27. 27.
    W. J. Miniscalco and R. S. Quimby, General procedure for the analysis of Er3+ cross sections, Opt. Lett. 16(4), 258 (1991)ADSCrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Xiao-Xia Wang
    • 1
  • Wei-Hao Zheng
    • 1
  • Qing-Lin Zhang
    • 1
  • Xiao-Li Zhu
    • 1
  • Hong Zhou
    • 1
  • Xiu-Juan Zhuang
    • 1
  • An-Lian Pan
    • 1
  • Xiang-Feng Duan
    • 2
  1. 1.Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, School of Physics and Electronic Science, and State Key Laboratory of Chemo/Biosensing and ChemometricsHunan UniversityChangshaChina
  2. 2.Department of Chemistry and BiochemistryUniversity of CaliforniaLos AngelesUSA

Personalised recommendations