Frontiers of Physics

, 12:121201 | Cite as

A survey of dark matter and related topics in cosmology

  • Bing-Lin Young
Open Access
Review Article


This article presents an extensive review of the status of the search of the dark matter. The first eight sections are devoted to topics in dark matter and its experimental searches, and the rest to selected topics in astrophysics and cosmology, which are intended to supply some of the needed background for students in particle physics. Sections 9 and 13 are introductory cosmology. The three astrophysical topics, Big Bang nucleosynthesis Section 10, Boltzmann transport equation and freeze out of massive particles Section 11, and CMB anisotropy Section 12 can all be studied in analytical approaches when reasonable approximations are made. Their original analytically forms, to which this article follows very closely, were given by particle physicists. Dark matter is an evolving subject requiring timely update to stay current. Hence a review of such a subject matter would undoubtedly have something wanting when it appears in print. It is hoped that this review can form a humble basis for those graduate students who would like to pursue the subject of dark matter. The reader can use the extensive table of contents to see in some details the materials covered in the article.


dark matter CMB anisotropy Boltzmann transport equation freeze out of massive particles 


  1. 1.
    S. Weinberg, The cosmological constant problem, Rev. Mod. Phys. 61, 1 (1989)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    D. J. Gross, The frontier physicist, Nature 467(7317), S8 (2010)ADSCrossRefGoogle Scholar
  3. 3.
    E. W. Kolb, Particle Physics and Cosmology, in: K. L. Peach and L. L. J. Vick (Eds.), St. Andrews, 1993, Proceedings, High Energy Phenomenology, arXiv: astroph/9403007Google Scholar
  4. 4.
    G. Aad, et al. (ATLAS Collaboration), Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716, 1 (2012), arXiv: 1207.7214 [hep-ex]ADSCrossRefGoogle Scholar
  5. 5.
    S. Chatrchyan, et al. (CMS Collaboration), Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716, 30 (2012), arXiv: 1207.7235 [hep-ex]ADSCrossRefGoogle Scholar
  6. 6.
    S. Chatrchyan, et al. (CMS Collaboration), Study of the mass and spin-parity of the Higgs boson candidate via its decays to Z boson pairs, Phys. Rev. Lett. 110(8), 081803 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    G. Aad, et al. (Atlas Collaboration), Evidence for the spin-0 nature of the Higgs boson using ATLAS data, Phys. Lett. B 726, 120 (3013), arXiv: 1307.1432 [hepex]Google Scholar
  8. 8.
    Y. Baryshev, Paradoxes of cosmological physics in the beginning of the 21st century, in: Proceedings of the XXX-th International Workshop on High Energy Physics - Particle and Astroparticle Physics, Gravitation and Cosmology - Predictions, Observations and New Projects, June 23-27, 2014, in Protvino, Moscow region, Russia; arXiv: 1501.01919 [physics.gen-ph]Google Scholar
  9. 9.
    D. N. Apergel, et al., Wilkinson Microwave Anisotropy Probe (WMAP) Three Year Results: Implications for Cosmology, Astrophys. J. Suppl. 170, 377 (2007), arXiv: astro-ph/0603449ADSCrossRefGoogle Scholar
  10. 10.
    This is the WMAP third data release made in March 2006. See The WMAP homepage including the WMAP 9-year results can be found at.Google Scholar
  11. 11.
    J. Beringer, et al. (Particle Data Group), The review of particle physics, Phys. Rev. D 86, 010001 (2012) ( Scholar
  12. 12.
    A list of publications on various aspects of the Planck data can be found inGoogle Scholar
  13. 13.
    K. A. Olive, et al. (Particle Data Group), The review of particle physics, Chin. Phys. C 38, 090001 (2014) (Updated version can be found at the PDG website: Scholar
  14. 14. 051110.htmlGoogle Scholar
  15. 15.
    L. Zappacosta, et al., Studying the WHIM content of the galaxy large-scale structures along the line of sight to H 2356-309, arXiv: 1004.5359 [astro-p-CO]Google Scholar
  16. 16. Scholar
  17. 17.
    E. Komatsu, et al., Five-year Wilkinson Microwave Anisotropy Probe Observations: Cosmological interpretation, Astrophys. J. Suppl. 180(2), 330 (2009), arXiv: 0803.0547ADSCrossRefGoogle Scholar
  18. 18.
    K. A. Olive, TASI lecture on dark matter, arXiv: astroph/ 0301505Google Scholar
  19. 19.
    H. Murayama, Physics beyond the standard model and dark matter, Lecture given in Les Houches 2006, arXiv: 0704.2276 [hep-ph]Google Scholar
  20. 20.
    F. Zwicky, Die Rotverschiebung von extragalaktischen Nebeln, Helvetica Physica Acta 6, 110U127 (1933); See also:F. Zwicky, On the masses of nebulae and of clusters of nebulae, Astrophys. J. 86, 217 (1937)zbMATHGoogle Scholar
  21. 21.
    J. Einasto, Dark Matter, Astronomy and Astrophysics 2010, Eds. O. Engvold, R. Stabell, B. Czerny, and J. Lattanzio, in: Encyclopedia of Life Support Systems (EOLSS), Developed under the Auspices of the UNESCO, Eolss Publishers, Oxford, UK; arXiv: 0901.0632 [astro-ph.CO]Google Scholar
  22. 22.
    K. Freeman and G. McNamara, In Search of Dark Matter, Springer, 2006Google Scholar
  23. 23.
    H. Zinkernagel, High-energy physics and reality-some philosophical aspects of a science, Ph.D. thesis, 1998, Niels Boho Institute, pp 4–5, HEPthesis.pdfGoogle Scholar
  24. 24.
    G. Bertone, D. Hooper, and J. Silk, Particle dark matter: Eidence, candidates and constraints, Phys. Rep. 405, 279 (2005), arXiv: hep-ph/0404175ADSCrossRefGoogle Scholar
  25. 25.
    G. B. Gelmini, TASI 2014 Lectures: The hunt for dark matter, arXiv: 1502.01320 [hep-ph]Google Scholar
  26. 26.
    Powerpoint presentations of talks given at the 42nd SLAC Summer Institute (2014) can be found at standardGoogle Scholar
  27. 27.
    J. Primack, A brief history of dark matter, http:// pdfGoogle Scholar
  28. 28.
    V. Springel, S. D. White, A. Jenkins, C. S. Frenk, N. Yoshida, L. Gao, J. Navarro, R. Thacker, D. Croton, J. Helly, J. A. Peacock, S. Cole, P. Thomas, H. Couchman, A. Evrard, J. Colberg, and F. Pearce, Simulations of the formation, evolution and clustering of galaxies and quasars, Nature 435(7042), 629 (2005), arXiv: astroph/ 0504097ADSCrossRefGoogle Scholar
  29. 29.
    NASA images from Large Synoptic Survey Telescope (LSST): Scholar
  30. 30.
    M. Bartelmann and P. Schneider, Weak gravitational lensing, Phys. Rep. 340(4-5), 291 (2001)ADSzbMATHCrossRefGoogle Scholar
  31. 31.
    R. Massey, J. Rhodes, R. Ellis, N. Scoville, A. Leauthaud, et al., Dark matter maps reveal cosmic scaffolding, Nature 445 (7125), 286 (2007)ADSCrossRefGoogle Scholar
  32. 32.
    O. Goske, B. Moore, J. Kneib, and G. Soucail, A wide-field spectroscopic survey of the cluster of galaxies Cl0024+ 1654-II. A high–speed collision? Astron. Astrophys. 386, 31 (2002)Google Scholar
  33. 33.
    More can be found in news/html/heic0709.html.Google Scholar
  34. 34.
    F. Kahlhoefer, K. Schmidt-Hoberg, M.T. Frandsen, and S. Sarkar, Colliding clusters and dark matter selfinteractions, Mon. Not. R. Astron. Soc. 437, 2865 (2014), arXiv: 1308.3419 [astro-ph.CO]ADSCrossRefGoogle Scholar
  35. 35. Scholar
  36. 36.
    D. Clowe, M. Bradac, A. H. Gonzalez, M. Markevitch, S. W. Randall, C. Jones, and D. Zaritsky, A direct empirical proof of the existence of dark matter, Astrophys. J. 648, L109 (2006), arXiv: astro-ph/0608407ADSCrossRefGoogle Scholar
  37. 37. Scholar
  38. 38.
    G. W. Angus, B. Famaey, and H. S. Zhao, Can MOND take a bullet? Analytical comparisons of three versions of MOND beyond spherical symmetry, Mon. Not. R. Astron. Soc. 371, 138 (2006), arXiv: astro-ph/0606216ADSCrossRefGoogle Scholar
  39. 39.
    M. Bradač, S. W. Allen, T. Treu, H. Ebeling, R. Massey, R. G. Morris, A. von der Linden, and D. Applegate Revealing the properties of dark matter in the merging cluster MACSJ0025.4-1222, arXiv: 0806.2320 [astroph]; a NASA news release at: mission_pages/chandra/news/08-111.html. A short video can be found atGoogle Scholar
  40. 40.
    D. Harvey, R. Massey, T. Kitching, A. Taylor, and E. Tottley, The non-gravitational interactions of dark matter in colliding galaxy clusters, Science 347, 1462 (2015), arXiv: 1503.07675 [astro-ph.CO]ADSCrossRefGoogle Scholar
  41. 41.
    R. Massey, et al., The behaviour of dark matter associated with 4 bright cluster galaxies in the 10kpc core of Abell 3827, Mon. Not. R. Astron. Soc. 449, 3393 (2015), arXiv: 1504.03388 [astroph.CO]ADSCrossRefGoogle Scholar
  42. 42.
    J. Navarro, C. S. Frenk, and S. D. White, The structure of cold Dark Matter Halos, Astrophys. J. 462, 563 (1886), arXiv: astro-ph/9508025ADSCrossRefGoogle Scholar
  43. 43.
    J. Navarro, C. S. Frenk, and S. D. White, Universal density profile from hierarchical clustering, Astrophys. J. 490, 493 (1997), arXiv: astro-ph/9611107ADSCrossRefGoogle Scholar
  44. 44.
    J. Einasto, On the construction of a composite model for the galaxy and on the determination of the system of galactic parameters, Trudy Astrofizicheskogo Instituta Alma-Ata 5, 87 (1965)ADSGoogle Scholar
  45. 45.
    D. Merritt, A. W. Graham, B. Moore, J. Diemand, and B. Terzic, Empirical models for Dark Matter Halos. I. Nonparametric construction of density profiles and comparison with parametric models, Astrophys. J. 132, 2685 (2006), arXiv: astro-ph/0509417ADSGoogle Scholar
  46. 46.
    A. A. Dutton and A. V. Macciò, Cold dark matter haloes in the Planck era: Evolution of structural parameters for Einasto and NFW profiles, Mon. Not. R. Astron. Soc. 441, 3359 (2014), arXiv: 1402.7073 [Astroph. CO]ADSCrossRefGoogle Scholar
  47. 47.
    A. Burkert, The structure of dark matter haloes in dwarf galaxies, Astrophys. J. 447, L25 (1995), arXiv: astroph/ 9504041ADSCrossRefGoogle Scholar
  48. 48.
    M. Pierre, J. M. Siegal-Gaskins, and P. Scott, Sensitivity of CTA to dark matter signals from the galactic center, JCAP 1406, 024 (2014), arXiv: 1401.7330 [astroph. HE]; Erratum: JCAP 1410, E01 (2014)ADSCrossRefGoogle Scholar
  49. 49.
    V. Vikram, et al. (DES Collaboration), Wide-Field lensing mass Maps from DES science verification data, arXiv: 1504.03002 [astro-ph.CO]Google Scholar
  50. 50.
    D. Scott and G. F. Smoot, Cosmic Microwave Background, given in Ref. [13]Google Scholar
  51. 51.
    D. H. Weinberg, J. S. Bullock, F. Gevernato, R. K. de Naray, and A. H. G. Peter, Cold dark matter: Controversies on small scales, Proceedings of the National Academy of Sciences of the USA (PNAS), approved Dec. 2, 2014; arXiv: 1306.0913 [astro-ph.CO]Google Scholar
  52. 52.
    M. Boylan-Kolchin, J. S. Bullock, and M. Kaplinghat, Too big to fail? The puzzling darkness of massive Milky Way subhaloes, Mon. Not. R. Astron. Soc. 415, L40 (2011), arXiv: 1103.0007 [astro-ph.CO]ADSCrossRefGoogle Scholar
  53. 53.
    E. Papastergis, R. Giovanelli, M. P. Haynes, and F. Shanka, Is there a “too big to fail” problem in the field? Astron. Astrophys. 574, A113 (2015), arXiv: 1407.4665 [astro-ph/GA]Google Scholar
  54. 54.
    J. R. Primack, Cosmological structure formation, arXiv: 1505.02821 [astro-ph.GA]Google Scholar
  55. 55.
    A. Schneider, D. Amderjadem, A. V. Maccio, and J. Diemand, Warm dark matter does not do better than cold dark matter in solving small-scale inconsistencies, Mon. Not. R. Astron. Soc. 441, 6 (2014), arXiv: 1309.5960 [astro-ph.CO]ADSCrossRefGoogle Scholar
  56. 56.
    D. N. Spergel and P. J. Steinhardt, Observational evidence for self-interacting cold dark matter, Phys. Rev. Lett. 84(17), 3760 (2000), arXiv: astro-ph/9909386ADSCrossRefGoogle Scholar
  57. 57.
    M. Milgrom, A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis, Astrophys. J. 270, 365 (1983) (listed in HEPINSPIRE not in the arXiv e- Print archive)ADSCrossRefGoogle Scholar
  58. 58.
    J. D. Bekenstein, Relativistic gravitation theory for the MOND paradigm, Phys. Rev. D 70, 083509 (2004), arXiv: astro-ph/0403694ADSCrossRefGoogle Scholar
  59. 59.
    B. Famaey and S. McGaugh, Modified Newtonian Dynamics (MOND): Observational phenomenology and relativistic extension, arXiv: 1112.3960 [astro-ph.CO]Google Scholar
  60. 60.
    I. Ferreras, N. Mavromatos, M. Sakellariadou, and M. F. Yusaf, Confronting MOND and TeVeS with strong gravitational lensing over galactic scales: An extended survey, Phys. Rev. D 86, 083507 (2012), arXiv: 1205.4880 [astro-ph.CO]ADSCrossRefGoogle Scholar
  61. 61.
    J. W. Moffat, Scalar-tensor-vector gravity theory, JCAP 0603, 004 (2006), arXiv: gr-qc/0506021ADSMathSciNetzbMATHCrossRefGoogle Scholar
  62. 62.
    C. Tao, Astrophysical constraints on dark Matter, to appear in the proceedings of CYGNUS 2011: 3rd Workshop on directional detection of dark matter (conference: C11-06-08), arXiv: 1110.0298 [astro-ph.CO]Google Scholar
  63. 63. soper/Mass/WIMPS.htmlGoogle Scholar
  64. 64.
    C. Munoz, Direct WIMP search and theoretical scenario, TAUP 2011, AgendaGoogle Scholar
  65. 65.
    M. Drees and G. Gerbier, Dark Matter, review article given in Ref. [13]Google Scholar
  66. 66.
    F. Iocco, M. Pato, and G. Bertone, Evidence for dark matter in the inner Milky Way, Nat. Phys. 11, 245 (2015), arXiv: 1502.03821 [astoph.GA]CrossRefGoogle Scholar
  67. 67.
    M. Pato and F. Iocco, The dark matter profile of the Milky Way: A non-parametric reconstruction, Astrophys. J. 803, L3 (2015), arXiv: 1504.03317 [astrpph. GA]ADSCrossRefGoogle Scholar
  68. 68.
    J. Silk, The Big Bang, Freeman, 1988Google Scholar
  69. 69.
    J. R. Bond, J. Centgrella, and A. S. Wilson, Dark matter and shocked pancakes, in: Proceedings of the Third Moriond Astrophysics Meeting, Formation and evolution of galaxies and large structures in the universe, edited by J. Audouze and J. Tran Thanh Van, Reidel, Dordrecht, 1984, pp 87–99Google Scholar
  70. 70.
    J. R. Primack and G. R. Blumenthal, What is the Dark Matter, in: Proceedings of the third Moriond Astrophysics Meeting, Formation and evolution of galaxies and large structures in the universe, edited by J. Audouze and J. Tran Thanh Van, Reidel, Dordrecht, 1984, pp 162–183Google Scholar
  71. 71.
    Daniel Chalonge Workshop CIAS Meudon 2010-2014, see:, X=0,1,2,3,4Google Scholar
  72. 72.
    G. Gelmini and P. Gondolo, DM production mechanisms, Ch. 7 of Particle Dark Matter: Observations, Models and Searches, edited by G. Bertone, Cambridge University Press, 2010, arXiv: 1009.3690 [astro-ph.CO]Google Scholar
  73. 73.
    H. Baer, K.Y. Choi, E. Kim, and L. Roszkowski, Dark matter production in the early universe: Beyond the thermal WIMP paradigm, Phys. Rep. 555, 1 (2014), arXiv: 1407.0017 [hep-ph]ADSMathSciNetCrossRefGoogle Scholar
  74. 74.
    E. W. Kolb and M. S. Turner, The Early Universe, Addison-Wesley, 1989Google Scholar
  75. 75.
    G. L. Kane, P. Kumar, B. D. Nelson, and B. Zhang, Dark matter production mechanisms with a nonthermal cosmological history - A classification, arXiv: 1502.05406 [hep-ph]Google Scholar
  76. 76.
    L. D. Duffy and K. Van Bibber, Axions as dark matter particles, New J. Phys. 11, 105008 (2009), arXiv: 0904.3346 [hep-ph]ADSCrossRefGoogle Scholar
  77. 77.
    P. Sikivie, Dark matter axions, Int. J. Mod. Phys. A 25, 554 (2010), arXiv: 0909.0949 [hep-ph]ADSzbMATHCrossRefGoogle Scholar
  78. 78.
    D. Hooper, Kaluza-Klein dark matter, in Proceeding of the Workshop on Exotic Physics with Neutrino Telescopes, 2006, available at: hooper_epnt.pdfGoogle Scholar
  79. 79.
    K. Griest and M. Kamionkowski, Unitarity limits on the mass and radius of dark-matter particles, Phys. Rev. Lett. 64(6), 615 (1990)ADSCrossRefGoogle Scholar
  80. 80.
    D. J. H. Chung, E. W. Kolb, and A. Riotto, Nonthermal Supermassive Dark Matter, Phys. Rev. Lett. 81, 4048 (1998), arXiv: hep-ph/9805473; WIMPZILLAS! Proceedings of the 2nd International Conference on dark matter in astro and particle physics, arXiv: hepph/ 9810361ADSCrossRefGoogle Scholar
  81. 81.
    V. Kuzmin and T. I. Tkachev, Matter creation via vacuum fluctuations in the early universe and observed ultra-high energy cosmic ray events, Phys. Rev. D 59, 123006 (1999), arXiv: hep-ph/9809547ADSCrossRefGoogle Scholar
  82. 82.
    J. A. Frieman, G. B. Gelmini, M. Gleiser, and E. W. Kolb, Primordial origin of nontopological solitons, Phys. Rev. Lett. 60(21), 2101 (1988)ADSCrossRefGoogle Scholar
  83. 83.
    A. L. Macpherson and B. A. Campbell, Biased discrete symmetry breaking and Fermi balls, Phys. Lett. B 347, 205 (1995), arXiv: hep-ph/9408387ADSCrossRefGoogle Scholar
  84. 84.
    R. B. Metcalf and J. Silk, New constraints on macroscopic compact objects as dark matter candidates from gravitational lensing of type Ia supernovae, Phys. Rev. Lett. 98(7), 071302 (2007)ADSCrossRefGoogle Scholar
  85. 85.
    Goddard Space Flight Center, Dark Matter may be Black Hole Pinpoints. NASA’s Imagine the Universe, 04.html. Retrieved 2008-09-13Google Scholar
  86. 86.
    M. Kesden and S. Hanasoge, Transient solar oscillation driven by primordial black holes, Phys. Rev. Lett. 107, 111101 (2011), arXiv: 1106.0011 [astro-ph.CO]ADSCrossRefGoogle Scholar
  87. 87.
    J. L. Feng and J. Kumar, Dark-matter particles without weak-scale masses or weak interactions, Phys. Rev. Lett. 101(23), 231301 (2008)ADSCrossRefGoogle Scholar
  88. 88.
    K. K. Boddy, J. L. Feng, M. Kaplinghat, Y. Shadmi, and T. M. P. Tait, Strongly interaction dark: Selfinteractions and keV lines, Phys. Rev. D 90, 095016 (2014), arXiv: 1408.6532 [hep-ph]ADSCrossRefGoogle Scholar
  89. 89.
    R. Essig, et al., Working Group Report: Dark sectors and new, light, weakly-coupled particles, arXiv: 1311.0029 [hep-ph]Google Scholar
  90. 90.
    G. Steigman and M. S. Turner, Cosmological constraints on the properties of weakly interacting massive particles, Nucl. Phys. B 253, 375 (1985)ADSCrossRefGoogle Scholar
  91. 91.
    N. Daci, I. De Bruyn, S. Lowette, M. H. G. Tytgat, and B. Zaldivar, Simplified SIMOs and the LHC, arXiv: 1503.05505 [hep-ph]Google Scholar
  92. 92.
    Y. Hochberg, E. Kuflik, T. Volansky, and J. G. Wacker, The SIMP miracle, Phys. Rev. Lett. 113, 171301 (2014)ADSCrossRefGoogle Scholar
  93. 93.
    N. Bernal, C. Garcia-Cely, and R. Rosenfeld, WIMP and SIMP dark matter from the spontaneous breaking of a globle group, arXiv: 1501.0197 [hep-ph]Google Scholar
  94. 94.
    J. L. Feng, Dark matter candidates from particle physics and methods of detection, Ann. Rev. Astron. Astrophys. 48, 495 (2010), arXiv: 1003.0904 [astro-ph.CO]ADSCrossRefGoogle Scholar
  95. 95.
    L. Roszkowski, Particle dark matter — A theorist’s perspective, Pramana 62, 389 (2004)ADSCrossRefGoogle Scholar
  96. 96.
    Report on the Direct Detection and Study of Dark Matter, The Dark Matter Scientific Assessment Group, A Joint Sub-panel of HEPAP and AAAC, p. 59, scientific_assessment_group/dmsag//_final_report.pdfGoogle Scholar
  97. 97.
    S. Tremaine and J. E. Gunn, Dynamical role of light neutral leptons in cosmology, Phys. Rev. Lett. 42, 407 (1979)ADSCrossRefGoogle Scholar
  98. 98.
    J. Madsen, Phase-space constraints on bosonic and fermionic dark matter, Phys. Rev. Lett. 64(23), 2744 (1990) J. Madsen, Generalized Tremaine-Gunn limits for bosons and fermions, Phys. Rev. D 44(4), 999 (1991)ADSCrossRefGoogle Scholar
  99. 99.
    F. Wilczek, Asymptotic Freedom: From Paradox to Paradigm, Nobel Lecture, December 8, 2004, http:// 2004/wilczek-lecture.pdfGoogle Scholar
  100. 100.
    J. Ellis and K. A. Olive, in: Particle Dark Matter, Observations, Models and Searches, Cambridge University Press, 2010, Ch. 8, Supersymmetric dark matter candidates, arXiv: 1001.3651 [astro-ph.CO]Google Scholar
  101. 101.
    S. Dodelson, Modern Cosmology, Academic Press, 2003; Erratum: Scholar
  102. 102.
    F. Bezrukov, Light sterile neutrino dark matter in extensions of the standard model, talk given at the Workshop CIAS Neudon 2011, Warm Dark matter in the galaxies: Theoretical and observational progress, June 8-10, 2011, Scholar
  103. 103.
    M. R. Lovell, V. Eke, C. S. Frenk, L. Gao, A. Jenkins, T. Theuns, J. Wang, S. D. M. White, A. Boyarsky, and O. Ruchayskiy, The haloes of bright satellite galaxies in a warm dark matter universe, Mon. Not. R. Astron. Soc. 420, 2318 (2012), arXiv: 1104.2929 [astro-ph.CO]ADSCrossRefGoogle Scholar
  104. 104.
    N. Smith, Status update on deep underground facilities, talk given in TAUP 2011, http://taup2011.mpp.mpg. de/?pg=AgendaGoogle Scholar
  105. 105.
    H. Chen, Underground laboratory in China, Eur. Phys. J. Plus 127, 105 (2012)CrossRefGoogle Scholar
  106. 106.
    Focus point on Deep Underground Science Laboratories and Projects, edited by A. Bettini, Eur. Phys. J. Plus 127, Sep. 2012Google Scholar
  107. 107.
    J. D. Lewin and P. F. Smith, Review of mathematics, numerical factors, and corrections for dark matter experiments based on elastic nuclear recoil, Astropart. Phys. 6, 87 (1996)ADSCrossRefGoogle Scholar
  108. 108.
    E. Armengaud, Gif Lectures on direct detection of dark matter, arXiv: 1003.2380 [hep-ph]Google Scholar
  109. 109.
    G. Jungman, M. Kamionkowski, and K. Girest, Supersymmetric dark matter, Phys. Rep. 267, 195 (1996), arXiv: hep-ph/9506380ADSCrossRefGoogle Scholar
  110. 110.
    K. Freese, J. Frieman, and A. Gould, Signal modulation in cold-dark-matter detection, Phys. Rev. D 37(12), 3388 (1988)ADSCrossRefGoogle Scholar
  111. 111.
    D. R. Tovey, R. J. Gaitskell, P. Gondolo, Y. A. Ramachers, and L. Roszkowski. A new model-independent method for extracting spin-dependent cross section limits from dark matter searches, Phys. Lett. B 488, 17 (2000), arXiv: hep-ph/0005041ADSCrossRefGoogle Scholar
  112. 112.
    Dark Matter Portal, Scholar
  113. 113.
    Dark Matter Hub, ?pid=1034004Google Scholar
  114. 114.
    S. C. Kim, et al. (KIMS Collaboration), New limits on interactions between weakly interacting massive particles and nucleons obtained with CsI(Tl) Crystal Detectors, Phys. Rev. Lett. 108, 181301 (2012), arXiv: 1204.2646 [astro-ph.CO]ADSCrossRefGoogle Scholar
  115. 115.
    9th International Conference: Identification of Dark Matter, July 23-27, 2012, Chicago. PDF files of the presentations can be found at: http://kicp-workshops. Scholar
  116. 116.
    T. Saab, An introduction to dark matter direct detection searches & techniques, arXiv: 1203.2566 [physics.ins-det]Google Scholar
  117. 117.
    M. Boezio, et al. (PAMELA Collaboration), PAMELA and indirect dark matter searches, New J. Phys. 11, 102053 (2009)CrossRefGoogle Scholar
  118. 118.
    D. Hooper, D. P. Finkbeiner, and G. Dobler, Evidence of dark matter annihilations in the WMAP haze, Phys. Rev. D 76, 083012 (2007), arXiv: 0705.3655 [Astro-ph]ADSCrossRefGoogle Scholar
  119. 119.
    M. Cirelli, Indirect search for dark matter: A status review, Pramana 79, 1021 (2012), arXiv: 1202.1454 [hepph]ADSCrossRefGoogle Scholar
  120. 120.
    P. Converners, P. Nath, and B. Nelson, The hunt for New physics at the Large Hadron Collider, Ch. 5, Connecting Dark Matter to the LHC, arXiv: 1001.2693 [hep-ph]Google Scholar
  121. 121. Scholar
  122. 122.
    A. Ringwald, L. J. Rosenberg, and G. Rybka, Axions and other similar particles, a mini review given in Ref. [13]Google Scholar
  123. 123.
    G. G. Raffelt, Astrophysical axion bounds, Lect. Notes Phys. 741, 51 (2008), arXiv: hep-ph/0611350ADSCrossRefGoogle Scholar
  124. 124.
    A. Friedland, M. Giannotti, and M. Wise, Constraining the axion-photon coupling with massive stars, Phys. Rev. Lett. 110(6), 061101 (2013)ADSCrossRefGoogle Scholar
  125. 125.
    G. Raffelt, Viewpoint: Particle physics in the sky, Physics 6, 14 (2013)CrossRefGoogle Scholar
  126. 126.
    I. N. T. Workshop, 12-50W Vistas in Axion Physics: A Roadmap for theoretical and Experimental Axion Physics through 2050, April 23-26, 2012, Seatle. 12_50W/Google Scholar
  127. 127.
    C. Athanassopoulos, L. B. Auerbach, D. A. Bauer, R. D. Bolton, B. Boyd, et al., Candidate Events in a Search for Muon Antineutrino to Electron Antineutrino Oscillations, Phys. Rev. Lett. 75(14), 2650 (1995), arXiv: nucl-ex/9504002ADSCrossRefGoogle Scholar
  128. 128.
    This website entitled LSND is a collection of information related to LSND: exp/all/lsnd/#1Google Scholar
  129. 129.
    A. A. Aguilar-Arevalo, et al. (MiniBooNE Collaboration), Improved Search for \({\nu ^ - }\mu > {\nu ^ - }e\) Oscillations in the MiniBooNE Experiment, Phys. Rev. Lett. 110, 161801 (2013)ADSCrossRefGoogle Scholar
  130. 130.
    K. B. M. Mahn, et al. (MiniBooNE Collaboration), Dual baseline search for muon neutrino disappearance at 0.5 eV2 < Δm 2 < 40 eV2, Phys. Rev. D 85, 032007 (2012), arXiv: 1106.5685 [hep-ex]ADSCrossRefGoogle Scholar
  131. 131.
    This website contains various information on the sterile neutrino: Scholar
  132. 132.
    K. N. Abazajian, et al., Light sterile neutrinos: A white paper, arXiv: 1204.5379 [hep-ph]Google Scholar
  133. 133.
    T. Asaka, S. Blanchet, and M. Shaposhnikov, The γMSM, dark matter and neutrino masses, Phys. Lett. B 631, 151 (2005), arXiv: hep-ph/0503065ADSCrossRefGoogle Scholar
  134. 134.
    T. Asaka and M. Shaposhnikov, The γMSM, dark matter and baryon asymmetry of the universe, Phys. Lett. B 620, 17 (2005), arXiv: hep-ph/0505013ADSCrossRefGoogle Scholar
  135. 135.
    A. Kusenko, Sterile neutrinos: The dark side of the light fermions, Phys. Rep. 481, 1 (2009), arXiv: 0906.2968 [hep-ph]ADSCrossRefGoogle Scholar
  136. 136.
    A. Boyarsky, D. Iakubovskyi, and O. Ruchayskiy, Next decade of sterile neutrino studies, Phys. Dark Univ. 1, 136 (2012), arXiv: 1306.4954 [astro-ph.CO]CrossRefGoogle Scholar
  137. 137.
    The Sterile Neutrinos references and useful link website: Scholar
  138. 138.
    E. Bulbul, et al., Detection of an unidentified emission line in the stacked X-ray spectrum of galaxy clusters, Astrophy. J. 789, 13 (2014), arXiv: 1402.2301 [astropph. CO]ADSCrossRefGoogle Scholar
  139. 139.
    A. Boyarsky, O. Ruchayskiy, D. Iakubovskyi, and J. Franse, An unidentified line in X-ray of the Andromeda and Sperseus galaxy cluster, Phys. Rev. Lett. 113, 251301 (2014), arXiv: 1402.4119 [astro-ph.CO]ADSCrossRefGoogle Scholar
  140. 140.
    K. N. Abazajian, Resonantly-produced 7 KeV sterile neutrino dark matte models and the properties of Milky Way satellites, Phys. Rev. Lett. 112, 161303 (2014), arXiv: 1403.0954 [astro-ph.CO]ADSCrossRefGoogle Scholar
  141. 141.
    R. Bernabei, et al. (DAMA/LIBRA Collaboration), New results from DAMA/LIBRA, Eur. Phys. J. C 67, 39 (2010), arXiv: 1002.1028 [astro-ph.GA]ADSCrossRefGoogle Scholar
  142. 142.
    R. Angnese, et al. (CDMS Collaboration), Silicon Detector Dark Matter Results from the Final Exposure of CDMS II, Phys. Rev. Lett. 111, 251401 (2013), arXiv: 1304.4279 [hep-ex]Google Scholar
  143. 143.
    C. E. Aaseth, et al. (CoGeNT Collaboration), CoGeNT: A Search for Low-Mass Dark Matter using p-type Point Contact Germanium Detectors, Phys. Rev. D 88, 012002 (2013), arXiv: 1208.5737 [astro-ph.CO]ADSCrossRefGoogle Scholar
  144. 144.
    G. Angloher, et al. (CRESST Collaboration), Results from 730 kg days of the CRESST-II Dark Matter Search, Eur. Phys. J. C 72, 1971 (2012), arXiv: 1109.0702 [astro-ph.CO]ADSCrossRefGoogle Scholar
  145. 145.
    P. Belli, Results from DAMA/LIBRA and perspectives of phase 2, talk given at Aspen 2013-Closing in on Dark Matter, January 28-February 3, 2013Google Scholar
  146. 146.
    P. Belli, Results and strategisties for dark matter investigations, talk at NDM 2015, Jyvaskyla, Finland, June 1-5, 2015, NDM15_jun15.pdfGoogle Scholar
  147. 147.
    DAMA Collaboration homepage: http://people.roma2. Scholar
  148. 148.
    M. Drees and G. Gerbier, Dark matter, a mini review in Ref. [11]Google Scholar
  149. 149.
    K. Blum, DAMA vs. the annually modulated muon background, arXiv: 1110.0857 [astroph.HE]Google Scholar
  150. 150.
    J. Klinger and V. A. Kudryavtsev, Muon-induced neutrons do not explain the DAMA data, Phys. Rev. Lett. 114, 151301 (2015), arXiv: 1503.07225 [hep-ph]ADSCrossRefGoogle Scholar
  151. 151.
    C. Arina, E. Del Nobile, and P. Panci, Dark matter with pseudoscalar-mediated interactions explains the DAMA signal and the galactic center excess, Phys. Rev. Lett. 114(1), 011301 (2015)ADSCrossRefGoogle Scholar
  152. 152.
    J. Cherwinka, et al. (DM-Ice Collaboration), First data from DM-Ice17, Phys. Rev. D 90, 092005 (2014), arXiv: 1401.4804 [astro-ph.IM]ADSCrossRefGoogle Scholar
  153. 153.
    R. Agnese, et al. (The SuperCDMS Collaboration), Search for low-mass weakly interacting massive particles with SuperCDMS, Phys. Rev. Lett. 112(24), 241302 (2014)ADSCrossRefGoogle Scholar
  154. 154.
    P. Cushman, Lecture given at the 2014 SLAC Summer Institute [26], entitled WIMP Direct Detection Searches: Solid State TechnologiesGoogle Scholar
  155. 155.
    B. Angloher, et al. (The EURECA Collaboration), EURECA conceptual design report, Physics of the Dark Universe 3, 41–74 (2014), available at: http://www.sciencedirect. com/science/article/pii/S2212686414000090ADSCrossRefGoogle Scholar
  156. 156.
    C. E. Aalseth, et al. (CoGeNT Collaboration), Results from a Search for Light-Mass Dark Matter with a p-type Point Contact Germanium Detector, Phys. Rev. Lett. 106, 131301 (2011), arXiv: 1002.4703 [astro-ph.CO]ADSCrossRefGoogle Scholar
  157. 157.
    C. E. Aalseth, et al. (CoGeNT Collaboration), Search for an Annual Modulation in a p-type Point Contact Germanium Dark Matter Detector, Phys. Rev. Lett. 107, 141301 (2011), arXiv: 1106.0650 [astro-ph.CO]ADSCrossRefGoogle Scholar
  158. 158.
    P. J. Fox, J. Kopp, M. Lisanti, and N. Weiner, A Co- GeNT modulation analysis, Phys. Rev. D 85, 036008 (2012), aXiv: 1107.0717 [hep-ph]ADSCrossRefGoogle Scholar
  159. 159.
    C. McCabe, DAMA and CoGeNT without astrophysical uncertainties, arXiv: 1107.0741 [hep-ph]Google Scholar
  160. 160.
    J. Herrero-Garcia, T. Schwetz, and J. Zupan, Astrphysics independent bounds on the annual modulation of dark matter signals, arXiv: 1205.0134 [hep-ph]Google Scholar
  161. 161.
    E. Aprile, et al. (XENON100 Collaboration), First dark matter result from the XENON100 experiment, arXiv: 1005.0389 [astro-ph.CO]Google Scholar
  162. 162.
    C. C. Aalseth, et al., Search for an annual modulation in three years of CoGeNT dark matter detector data, arXiv: 1401.3295 [astro-ph.CO]Google Scholar
  163. 163.
    J. H. Davis, C. McCabe, and C. Boehm, Quantifying the evidence for dark matter in CoGeNT data, JCAP 1408, 014 (2014), arXiv: 1405.0495 [hep-ph]ADSCrossRefGoogle Scholar
  164. 164.
    G. Angloher, et al. (CRESST Collaboration), Results frm 730 kg days of the CRESST-II Dark Matter Search, Eur. Phys. J. C 72, 1971 (2012), arXiv: 1109.0702 [astro-ph.CO]ADSCrossRefGoogle Scholar
  165. 165.
    G. Angloher, et al. (CRESST Collaboration), Results on low mass WIMPs using an upgraded CRESST-II detector, Eur. Phys. J. C 74 3184 (2014), arXiv: 1407.3146 [astro-ph.CO]ADSCrossRefGoogle Scholar
  166. 166.
    X.-J. Bi, P.-F. Yin, and Q. Yuan, Status of dark matter detection, Front. Phys. 8, 794 (2013), arXiv: 1409.4590 [hep-ph]CrossRefGoogle Scholar
  167. 167.
    M. Boudaud, et al., A new look at the cosmic ray positron fraction, Astron. Astrophys. 575, A67 (2015)ADSCrossRefGoogle Scholar
  168. 168.
    S.-J. Lin, Q. Yuan, and X.-J. Bi, Quantitative study of the AMS-02 electron/positron spectra: Implications for pulsars and dark matter properties, Phys. Rev. D 91, 063508 (2015), arXiv: 1409.6248 [astro-ph.HE]ADSCrossRefGoogle Scholar
  169. 169.
    J. Feng and H. H. Zhang, Pulsar interpretation of the lepton spectra measured by AMS-02, arXiv: 1504.03312 [hep-ph]Google Scholar
  170. 170.
    S. Ting, The AMS Experiment, talk given at the AMS Day at CERN, April 15-17, 2015, event/381134/other-view?view=standardGoogle Scholar
  171. 171.
    G. Giesen, M. Boudaud, Y. Génolini, V. Poulin, M. Cirelli, P. Salati, and P. D. Serpico, AMS-02 Antiprotons, at last! Secondary astrophysical component and immediate implications for Dark Matter, arXiv: 1504.04276 [astro-ph.HE]Google Scholar
  172. 172.
    K. Hamaguchi, T. Moroi, and K. Nakayama, AMS-02 Antiprotons from Annihilating or Decaying Dark Matter, Phys. Lett. B 747, 523 (2015), arXiv: 1504.05937 [hep-ph]ADSCrossRefGoogle Scholar
  173. 173.
    L. Bergström, Dark matter evidence, particle physics candidates and detection methods, arXiv: 1205.4882Google Scholar
  174. 174.
    C. Weniger, A tentative Gamma-ray line from dark matter annihilation at the Fermi Large Area Telescope, arXiv: 1204.2797 [hep-ph]Google Scholar
  175. 175.
    M. Ackermann, et al. (Fermi-LAT Collaboration), Constraining Dark Matter Models from a Combined Analysis of Milky Way Satellites with the Fermi Large Area Telescope, Phys. Rev. Lett. 107, 241302 (2011), arXiv: 1108.3546 [astro-ph.HE]ADSCrossRefGoogle Scholar
  176. 176.
    A. Geringer-Smith and S. M. Koushiappas, Exclusion of canonical WIMPs by the joint analysis of Milky Way dwarfs with Fermi, Phys. Rev. Lett. 107, 241303 (2011), arXiv: 1108.2914 [astro-ph.CO]ADSCrossRefGoogle Scholar
  177. 177.
    Y-L. S. Tsai, Q. Yuan, and X. Huang, A generic method to constrain the dark matter model parameter from Fermi observations of dwarf spheroids, JCAP 1303, 018 (2013), arXiv: 1212.3990 [astro-ph.HE]CrossRefGoogle Scholar
  178. 178.
    S. Ando and D. Nagai, Fermi-LAT constraints on dark matter annihilation cross section from observations of the Fornax cluster, JCAP 1207, 017 (2012), arXiv: 1201.0753 [astro-ph.HE]ADSCrossRefGoogle Scholar
  179. 179.
    Jianxin Han, C. S. Frenk, V. R. Eke, and Liang Cao, Constraining Extended Gamma-ray Emission from Galaxy Clusters, Mon. Not. R. Astron. Soc. 427, 1651 (2012), arXiv: 1207.6749 [astro-ph.CO]ADSCrossRefGoogle Scholar
  180. 180.
    S. Ando and E. Komatsu, Constraints on the annihilation cross section of dark matter particles from anisotropies in the diffuse gamma-ray background measured with Fermi-LAT, arXiv: 1301.5901 [astro-ph.CO]Google Scholar
  181. 181.
    M. Ackermann, et al. (Fermi-LAT Collaboration), The spectrum of isotropic diffuse gamma ray emission between 100 MeV and 820 GeV, Astrophys. J. 799, 86 (2015), arXiv: 1410.3696 [astro-ph.DE]ADSCrossRefGoogle Scholar
  182. 182.
    M. Fornasa and M. A. Sanchez-Conde, The nature of the diffuse gamma-ray background, arXiv: 1502.02866 [astro-ph.CO]Google Scholar
  183. 183.
    D. Hooper and T. Linden, On the origin of the gamma rays from the galactic center, Phys. Rev. D 84, 123005 (2011), arXiv: 1110.0006 [astro-ph.HE]ADSCrossRefGoogle Scholar
  184. 184.
    A. Boyarsky, D. Malyshev, and D. Ruchayskiy, A comment on the emission from the Galactic Center as seen by the Fermi telescope, Phys. Lett. B 705, 165 (2011), arXiv: 1012.5839 [hep-ph]ADSCrossRefGoogle Scholar
  185. 185.
    K. N. Abazajian and M. Kaplinghat, Detection of a gamma-ray source in the galactic center consistent with extended emission from dark matter annihilation and concentrated astrophysical emission, Phys. Rev. D 86, 083511 (2012), Erratum: Phys. Rev. D 87, 129902 (2013), arXiv: 1207.6047 [astro-ph.HE]ADSCrossRefGoogle Scholar
  186. 186.
    T. Daylan, D. P. Finkbeiner, D. Hooper, T. Linden, S. K. N. Portillo, N. L. Rodd, and T. R. Slatyer, The characterization of the gamma-ray signal from the central Milky Way: A compelling case for annihilating dark matter, arXiv: 1402.6703 [astro-ph.HE]Google Scholar
  187. 187.
    T. Bringmann, X. Huang, A. Ibarra, S. Vogl, and C. Weniger, Fermi-LAT search for internal bremsstrahlung signatures from dark matter annihilation, JCAP 1207, 054 (2012), arXiv: 1203.1312 [hep-ph]ADSCrossRefGoogle Scholar
  188. 188.
    E. Tempel, A. Hektor, and M. Raidal, Fermi 130 GeV gamma-ray excess and dark matter annihilation in subhaloes and in the galactic center, JCAP 1209, 032 (2012), arXiv: 1205.1045 [hep-ph]ADSCrossRefGoogle Scholar
  189. 189.
    M. Ackermann, et al., Updated search for spectral lines from galactic dark matter interactions with pass 8 data from the Fermi Large Area Telescope, Phys. Rev. D 91, 122002 (2015)ADSCrossRefGoogle Scholar
  190. 190.
    N. Prantzos, et al., The 511 KeV emission from positron annihilation in the Galaxy, Rev. Mod. Phys. 83, 1001 (2011), arXiv: 1009.4620 [astro-ph.HE]ADSCrossRefGoogle Scholar
  191. 191.
    K. Helbing, et al. (The IceCube Collaboration), IceCube as a discovery observatory for physics beyond the standard model, arXiv: 1107.5227 [hep-ex]Google Scholar
  192. 192.
    R. Kappl and M. W. Winkler, New limits on dark matter from Super-Kamiokande, Nucl. Phys. B 850, 505 (2011) arXiv: 1104.0679 [hep-ph]ADSzbMATHCrossRefGoogle Scholar
  193. 193.
    M. G. Aartsen, et al., Search for dark matter annihilations in the Sun with the 79-string IceCube detector, Phys. Rev. Lett. 110, 131302 (2013), arXiv: 1212.4097 [astro-ph.HE]ADSCrossRefGoogle Scholar
  194. 194.
    K. Choi, et al. (Super-K Collaboration), Search for neutrinos from annihilation of captured low-mass dark matter particles in the Sun by Super-Kamiokande, arXiv: 1503.04858 [hep-ex]Google Scholar
  195. 195.
    M. G. Aartsen, et al. (IceCube Collaboration), Search for dark matter annihilation in the galactic center with IceCube-79, arXiv: 1505.07259 [astro-ph.HE]Google Scholar
  196. 196.
    F. Donato, N. Fernengo, and P. Salati, Antideuterons as a signature of supersymmetric dark matter, Phys. Rev. D 62, 043003 (2000), arXiv: hep-ph/9904481ADSCrossRefGoogle Scholar
  197. 197.
    M. Kadastic, M. Raidal, and A. Strumia, Enhanced anti-deuteron Dark Matter signal and the implications of PAMELA, Phys. Lett. B 683, 248 (2010), arXiv: 0908.1578 [hep-ph]ADSCrossRefGoogle Scholar
  198. 198.
    T. Aramaki, et al., Review of the theoretical and experimental status of dark matter identification with cosmicray antideuterons, arXiv: 1505.07785 [hep-ph]Google Scholar
  199. 199.
    J. B. Billard and E. Figueroa-Feliciano, Implication of neutrino backgrounds on the reach of next generation dark matter direct detection experiments, Phys. Rev. D 89, 023524 (2024), arXiv: 1307.5458 [hep-ph]ADSCrossRefGoogle Scholar
  200. 200.
    M. Schumann, Dark Matter 2014, EPJ Web Conf. 96, 01027 (2015), arXiv: 1501.01200 [astroph.CO]CrossRefGoogle Scholar
  201. 201.
    E. Aprile, et al. (XENON Collaboration), Physics reach of the XENON1T dark matter experiment, JCAP 04, 027 (2016), arXiv: 1512.07501 [physics.ins-det]ADSCrossRefGoogle Scholar
  202. 202.
    L. Baudis, et al., Neutrino physics with multi-ton scale liquid xenon detector, JCAP 1401, 044 (2014), arXiv: 1309.7024 [physics.ins-det]ADSCrossRefGoogle Scholar
  203. 203.
    A. Kish, Direct Dark Matter Detection with Xenon and DARWIN Experiment, PoS TIPP 2014, 164 (2014), C14-06-02 ProceedingsGoogle Scholar
  204. 204.
    D. S. Akerib, et al. (LZ Collaboration), LUX-ZEPLIN (LZ) Conceptual Design Report, LBNL-190005, arXiv: 1509.02910 [physics.ins-det]Google Scholar
  205. 205.
    D. Bauer, et al., Snowmass CF1 Summary: WIMP Dark Matter Direct Detection, arXiv: 1310.8327 [hep-ex]Google Scholar
  206. 206.
    L. Hsu, Direct searches for dark matter, plenary talk given at the ICHEP 2012, ch/ detailedGoogle Scholar
  207. 207.
    R. Aaij, et al., First evidence for the decay \(B_s^0 \to {\mu ^ + }{\mu ^ - }\), Phys. Rev. Lett. 110(2), 021801 (2013)ADSCrossRefGoogle Scholar
  208. 208.
    K. Hara, et al. (Belle Collaboration), Evidence for \({B^ - } \to {\tau ^ - }{\bar \nu _\tau }\) with a Hadronic Tagging Method Using the Full Data Sample of Belle, Phys. Rev. Lett. 110, 131801 (2013), arXiv: 1208.4678 [hep-ex]ADSCrossRefGoogle Scholar
  209. 209.
    A. Dighe, D. Ghosh, K. M. Patel, and S. Raychaudhuri, Testing Times for Supersymmetry: Looking under the Lamp Post, arXiv: 1303.0721 [hep-ph]Google Scholar
  210. 210.
    G. Rolandi, LHC Results–Highlights, Lecture given at the European School of High Energy Physics (ESHEP2012), June 2012, Anjou, France, arXiv: 1211.3718 [hep-ex]Google Scholar
  211. ai]211.
    A. V. Gladyshev and D. I. Kazakov, Is (low Energy) SUSY still alive? Lecture given at the European School of High Energy Physics (ESHEP2012), June 2012, Anjou, France, arXiv: 1212.2548 [hep-ex]Google Scholar
  212. 212.
    P. Bectle, T. Plehn, and C. Sander, The Status of Supersymmetry after the LHCC Run 1, arXiv: 1506.03091 [hep-ex]Google Scholar
  213. 213.
    B. W. Lee and S. Weinberg, Cosmological Lower Bound on Heavy-Neutrino Masses, Phys. Rev. Lett. 39, 165 (1977)ADSCrossRefGoogle Scholar
  214. 214.
    D. E. Kaplan, M. A. Luty, and K. M. Zurek, Asymmetric Dark Matter, Phys. Rev. D 79, 115016 (2009), arXiv: 0901.4117 [hep-ph]ADSCrossRefGoogle Scholar
  215. 215.
    H. Davoudiasl and R. N. Mohapatra, On Relating the Genesis of Cosmic Baryons and Dark Matter, New J. Phys. 14, 095011 (2012), arXiv: 1203.1247 [hep-ph]ADSCrossRefGoogle Scholar
  216. 216.
    P. Gondolo, Theory of low mass WIMPs, talk given at UCLA Dark Matter 2012 https://hepconf.physics. Scholar
  217. 217.
    N. Arkani-Hamed, D. P. Finkbeiner, T. R. Slatyer, and N. Weiner, A Theory of Dark Matter, Phys. Rev. D 79, 015014 (2009), arXiv: 0810.0713 [hep-ph]ADSCrossRefGoogle Scholar
  218. 218.
    S. Weinberg, Gravitation and Cosmology, Principles and Applications of the General Theory of Relativity, John Wiley & Sons, 1972Google Scholar
  219. 219.
    P. J. E. Peebles, Principles of Physical Cosmology, Princeton University Press, 1993Google Scholar
  220. 220.
    A. Linde, Particle Physics and inflationary Cosmology, Hardwood, Chur, Switzerland, 1990CrossRefGoogle Scholar
  221. 221.
    S. Weinberg, Cosmology, Oxford University Press, 2008. Erratum: corrections.htmlzbMATHGoogle Scholar
  222. 222.
    L. Bergström and A. Goobar, Cosmology and Particle Astrophysics, Second Edition, Springer, 2003zbMATHGoogle Scholar
  223. 223.
    V. Mukhanov, Physical Foundations of Cosmology, Cambridge University Press, 2005zbMATHCrossRefGoogle Scholar
  224. 224.
    D. H. Lyth and A. R. Liddle, The Primordial Density Perturbation, Cosmology, Inflation, and the Origin of Structure, Cambridge University Press, 2009zbMATHCrossRefGoogle Scholar
  225. 225.
    A. Liddle and J. Loveday, Oxford Companion to Cosmology, Oxford University Press, 2008zbMATHCrossRefGoogle Scholar
  226. 226.
    K. W. Ford and J. A. Wheeler, Geons, Black Holes, and Quantum Foam: A Life in Physics, W.W. Norton & Company, Inc., 1998, p. 235zbMATHGoogle Scholar
  227. 227.
    E. Hubble, A relation between distance and radial velocity among extra-galactic nebulae, Proc. Natl. Acad. Sci. USA 15(3), 168 (1929)ADSzbMATHCrossRefGoogle Scholar
  228. 228.
    P. P. Penzias and R. W. Wilson, A measurement of excess antenna temperature at 4048-Mc/s, Astrophys. J. 142, 419 (1965)ADSCrossRefGoogle Scholar
  229. 229.
    J. C. Mather, et al., A preliminary measurement of the cosmic microwave background spectrum by the Cosmic Background Explorer (COBE) satellite, Astrophys. J. 354, 237 (1990); J. C. Mather, et al., Measurement of the cosmic microwave background spectrum by the COBE FIRAS instrument, Astrophys. J. 420, 439 (1994)CrossRefGoogle Scholar
  230. 230.
    S. Weinberg, The First Three Minutes, Basic Books, 1993Google Scholar
  231. 231.
    A. G. Riess, et al., Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant, Astron. J. 116, 1009 (1989)ADSCrossRefGoogle Scholar
  232. 232.
    S. Perlmutter, et al., Measurements of Ω and Λ from 42 High-Redshift Supernovae, Astrophys. J. 517, 565 (1999)ADSCrossRefGoogle Scholar
  233. 233. Scholar
  234. 234.
    S. M. Carroll, Lecture Notes on General Relativity, Ch. 8, arXiv: gr-qc/9712019, and Scholar
  235. 235.
    V. Eric, Linder, First Principles of Cosmology, Addison-Wesley, 1997Google Scholar
  236. 236.
    P. A. R. Ade, et al. (Planck Collaboration), Planck 2013 results. XVI. Cosmological parameters, arXiv: 1303.5076 [astro-ph.CO]Google Scholar
  237. 237.
    C. Kittel and H. Kroemer, Thermal Physics, W.H. Freemann and Company, 1998Google Scholar
  238. 238.
    K. A. Olive, The violent Universe: The Big Bang, lectures given at the 2009 European School of Hing- Energy Physics, Bautzen, Germany, June 2009, arXiv: 1005.3955 [hep-ph]Google Scholar
  239. 239.
    R. J. Scherer and M. S. Turner, On the relic, cosmic abundance of stable, weakly interacting massive particles, Phys. Rev. D 33, 1585 (1986); Erratum: Phys. Rev. D 34, 3263 (1986)ADSCrossRefGoogle Scholar
  240. 240.
    B. S. Ryden, Introduction to Cosmology, January 13, 2006. Introduction-Cosmology-Ryden.pdf. This is presumably the web form of the same book published in 2003.Google Scholar
  241. 241.
    L. Verde, et al. (WMAP Collaboration), First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters, Astrophys. J. Suppl. 148, 175 (2003), arXiv: astroph/ 0302209ADSCrossRefGoogle Scholar
  242. 242.
    J. R. III Gott, M. Jurič, D. Schtegel, F. Hoyle, M. Vogeley, M. Tegmark, N. Bachall, and J. Brinkmann, A Map of the Universe, Astrophys. J. 624, 463 (2005), arXiv: astro-ph/0310571ADSCrossRefGoogle Scholar
  243. 243.
    R. E. Alpher, H. Bethe, and G. Gamov, The origin of chemical elements, J. Wash. Acad. Sci. 38(8), 288 (1948)Google Scholar
  244. 244.
    K. Jedamzik and M. Pospelov, Big bang nucleosynthesis and particle dark matter, New J. Phys. 11, 105028 (2009), arXiv: 0906.2087 [hep-ph]ADSCrossRefGoogle Scholar
  245. 245.
    K. Jedamzik and M. Pospelov, Big bang nucleosynthesis as a probe of new physics, Ann. Rev. Nucl. Sci. 60, 539 (2010), arXiv: 1011.1054 [hep-ph]CrossRefGoogle Scholar
  246. 246.
    C. L. Bennett, et al. (WMAP Collaboration), First year Wilkinson Microwave Anisotropy probe (WMAP) observations: Preliminary maps and basic results, Astrophys. J. Suppl. 148, 1 (2003), arXiv: astro-ph/0302207ADSCrossRefGoogle Scholar
  247. 247.
    The following articles are given in Footnote 1, pp 159–160, [221] to which we refer for more details: V. F. Mukhanov, arXiv: astrp-ph/0303073, G. Steigman, arXiv: astro-ph/0307244, arXiv: astro-ph/0308511, arXiv: astro-ph/0501591, and arXiv: astro-ph/0511534Google Scholar
  248. 248.
    K. A. Olive, G. Steigman, and T. P. Walker, Primordial Nucleosynthesis: Theory and Observations, Phys. Rep. 333, 389 (2000), arXiv: astro-ph/9905320ADSCrossRefGoogle Scholar
  249. 249.
    D. N. Schramm and M. S. Turner, Big-bang nucleosynthesis enters the precision era, Rev. Mod. Phys. 70, 303 (1998), arXiv: astro-ph/9706069ADSCrossRefGoogle Scholar
  250. 250.
    S. Sarkar, Big Bang nucleosynthesis and physics beyond the Standard Model, Rep. Prog. Phys. 59, 1493 (1996), arXiv: hep-ph/9602260ADSCrossRefGoogle Scholar
  251. 251.
    J. Bernstein, L. S. Brown, and G. Feinbeerg, Cosmological helium production simplified, Rev. Mod. Phys. 61, 25 (1989)ADSCrossRefGoogle Scholar
  252. 252.
    R. Esmailzaedeh, G. D. Starkman, and S. Dimopoulos, Primordial nucleosynthesis without a computer, Astrophys. J. 387, 504 (1991)ADSCrossRefGoogle Scholar
  253. 253.
    V. Mukhanov, Nucleosynthesis without a computer, Int. J. Theor. Phys. 43, 669 (2003), arXiv: astro-ph/0303073zbMATHCrossRefGoogle Scholar
  254. 254.
    C. Hayashi, Proton-neutron concentration ratio in the expanding universe at the stages preceding the formation of the elements, Prog. Theor. Phys. 5, 224 (1950)ADSCrossRefGoogle Scholar
  255. 255.
    G. Steigman, D. N. Schramm, and J. Gunn, Cosmological limits to the number of massive leptons, Phys. Lett. B 66, 202 (1977)ADSCrossRefGoogle Scholar
  256. 256.
    K. A. Olive and G. Steigman, A new look at neutrino limits from big bang nucleosynthesis, Phys. Lett. B 354, 357 (1995)ADSCrossRefGoogle Scholar
  257. 257.
    B. W. Carroll and D. A. Ostlie, An Introduction to Modern Astrophysics, Pearson Education, 2007, Ch. 29Google Scholar
  258. 258.
    J. Bernstein, L. S. Brown, and G. Feinberg, Cosmological heavy-neutrino problem, Phys. Rev. D 32(12), 3261 (1985)ADSCrossRefGoogle Scholar
  259. 259.
    D. A. Dicus, E. W. Kolb, and V. L. Teplitz, cosmological upper bound on heavy-neutrino lifetimes, Phys. Rev. Lett. 39, 168 (1977)ADSCrossRefGoogle Scholar
  260. 260.
    E. W. Kolb and K. A. Olive, Lee-Weinberg bound reexamined, Phys. Rev. D 33(4), 1202 (1986) (in INSPIRE Search, fulltext available at the Fermilab Library Server)ADSCrossRefGoogle Scholar
  261. 261.
    M. T. Ressell and M. S. Turner, Comments Astrophys. 14, 323 (1990), Bull. Am. Astron. Soc. 22, 753 (1990) [Fermilab-pub-89/214-A, Oct. 1989]ADSGoogle Scholar
  262. 262.
    A. Lasenby, Physics of Primary CMB Anisotropy, Lasenby.pdfGoogle Scholar
  263. 263.
    J. C. Mather, et al., A preliminary measurement of the cosmic microwave background spectrum by the Cosmic Background Explorer (COBE) Satellite, Astrophys. J. 354, L37 (1990)ADSCrossRefGoogle Scholar
  264. 264.
    G. F Smoot, et al., Structure in the COBE Differential Microwave Radiometer First-year Maps, Astrophys. J. 396, L1 (1992)ADSCrossRefGoogle Scholar
  265. 265.
    R. Adam, et al. (Planck Collaboration), Plank 2015 results. I. Overview of products and Scientific results, arXiv: 1502.01582 [astro-ph.CO]Google Scholar
  266. 266.
    P. A. R. Ade, et al. (Planck Collaboration), Planck 2015 results. XIII. Cosmological parameters, arXiv: 1502.01589 [astro-ph.CO]Google Scholar
  267. 267.
    http://lambda.gsfc.nasa.govGoogle Scholar
  268. 268.
    See: htmlGoogle Scholar
  269. 269.
    Y. Itoh, K. Yahata, and M. Takada, A dipole anisotropy of galaxy distribution: Does the CMB rest-frame exist in the local universe? Phys. Rev. D 82, 043530 (2010), arXiv: 0912.1460 [astroph. CO]ADSCrossRefGoogle Scholar
  270. 270.
    G. Hinshaw, et al. (WMAP Collaboration), Five-Year Wilkinson Microwave Anisotropy Probe Observations: Data processing, sky maps, and basic results, Astrophys. J. Suppl. 180, 225 (2009)ADSCrossRefGoogle Scholar
  271. 271.
    Ya. B. Zel’dovich and R. A. Sunyaev, The Interaction of Matter and Radiation in a Hot-Model Universe, Astrophys. Space Sci. 4, 301 (1969); The Observations of Relic Radiation as a Test of the Nature of X-Ray Radiation from the Clusters of Galaxies; R. A. Sunyaev and Ya. B. Zel’dovich, The Observations of Relic Radiation as a Test of the Nature of X-Ray Radiation from the Clusters of Galaxies, Comments Astrophys. Space Phys. 2, 173 (1972)ADSCrossRefGoogle Scholar
  272. 272.
    J. E. Carlstrom, G. P. Hoder, and E. D. Reese, Cosmology with the Sunyaev–Zel’dovich Effect, Annu. Rev. Astron. Astrophys. 40, 643 (2002), arXiv: astroph/ 0208192ADSCrossRefGoogle Scholar
  273. 273.
    R. K. Sachs and A. M. Wolfe, Perturbations of a cosmological model and angular variations of the microwave background, Astrophys. J. 147, 73 (1987)ADSCrossRefGoogle Scholar
  274. 274.
    R. K. Sachs and A. M. Wolfe, Perturbations of a cosmological model and angular variations of the microwave background, Gen. Relativ. Gravit. 39, 1929 (2007)ADSzbMATHCrossRefGoogle Scholar
  275. 275.
    A. J. Nishizawa, Integrated Sachs Wolfe Effect and Rees Sciama Effect, Prog. Theor. Exp. Phys. 2014, 06B110 (2014), arXiv: 1404.5102 [astro-ph.CO]CrossRefGoogle Scholar
  276. 276.
    W. Hu, CMB anisotropy tutorial: http://background. Scholar
  277. 277.
    D. Langlois, Isocurvature cosmology perturbation and the CMB, C. R. Phys. 4, 953 (2003)ADSCrossRefGoogle Scholar
  278. 278.
    C. Gordon, Adiabatic and entropy perturbations in cosmology, arXiv: astro-ph/0112523Google Scholar
  279. 279.
    W. Hu and M. White, Acoustic signatures in the cosmic microwave background, Astrophys. J. 471, 30 (1996), arXiv: astro-ph/9602019ADSCrossRefGoogle Scholar
  280. 280.
    J. A. Peacok, Large-scale surverys and cosmic structure, 7. Anisotropies in the CMB http://ned.ipac.caltech. edu/level5/Sept03/Peacock/Peacock7.htmlGoogle Scholar
  281. 281.
    M. White, Big Bang Acoustics: Sound for the new born univers, 8. Removing Distortion http://www.astro. Scholar
  282. 282.
    H. Jurki-Suonio, Cosmology I & II. See Chapters 12 and 13, Scholar
  283. 283.
    U. Seljak, A Two-Fluid Approximation for Calculating the Cosmic Microwave Background Anisotropies, Astrophys. J. 435, L87 (1994), arXiv: astro-ph/9406050ADSCrossRefGoogle Scholar
  284. 284.
    W. Hu and N. Sugiyama, Anisotropies in the Cosmic Microwave Background: An Analytic Approach, Astrophys. J. 444, 489 (1995), arXiv: astro-ph/9407093ADSCrossRefGoogle Scholar
  285. 285.
    M. White and J. D. Cohn, TACMB-1: The Theory of Anisotropies in the Cosmic Microwave Background (Bibliographic Resource Letter), Am. J. Phys. 70, 106 (2002), arXiv: astro-ph/0203120ADSCrossRefGoogle Scholar
  286. 286.
    See: harmonicsGoogle Scholar
  287. 287.
    A wealth information on the Cosmic Bacground Explorer (CORE) is accessible on the web. For instance a quick description can be found in http://en.wikipedia. org/wiki/Cosmic_Background_ExplorerGoogle Scholar
  288. 288.
    Information on the Wilkinson Microwave Anisotropy probe (WMAP) can be found on its official site, http:// A description of the angular resolutions at different frequency ranges: http://map. or a brief complete description of the experiment: http://en. _ProbeGoogle Scholar
  289. 289.
    The Planck Spacecraft is an European Space Agency (ESA) experiment for the observation of the CMB anisotropy, lauched in May 2009. For a general description, see officila sites: php?project=Planck _index_0_m.html. The angular resolution varies with the frequency. For the high frequency instrument the angular resolution varies from 10 to 5 arcmin. The low frequency instrument has lower resolution. For a general description, see: Planck_ (spacecraft)Google Scholar
  290. 290.
    I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, Corrected and Enlarged Edition, Academic Press, 1980zbMATHGoogle Scholar
  291. 291.
    M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Dover Pub., 1970zbMATHGoogle Scholar
  292. 292.
    D. Baumann Cosmology part III Mathematical Tripos, pp 80–81, Cosmology/Lectures.pdfGoogle Scholar
  293. 293.
    H. Kurki-Suonio, Cosmological Perturbation Theory, Sept. 30, 2012, CosPer.pdf/Google Scholar
  294. 294.
    H. Kodama and M. Sasaki, Cosmological Perturbation Theory, Prog. Theor. Phys. Suppl. 78, 1 (1984)ADSCrossRefGoogle Scholar
  295. 295.
    J. Fritz, An introduction to the theory of hydrodynamic limits, PUBLI/je.pdfGoogle Scholar
  296. 296.
    U. Seljak and M. Zaldarriaga, A line of sight approach to cosmic microwave background anisotropies, Astrophys. J. 469, 437 (1996), arXiv: astro-ph/9603033ADSCrossRefGoogle Scholar
  297. 297.
    A. Lewis, A. Challinor, and A. Lasenby, Efficient Computation of CMB anisotropies in closed FRW models, Astrophys. J. 538, 473 (2000), arXiv: astro-ph/9911177 10.1086/309179ADSCrossRefGoogle Scholar
  298. 298.
    M. Doran, CMBEASY: an Object Oriented Code for the Cosmic Microwave Background, JCAP 0510, 011 (2005), arXiv: astro-ph/0302138ADSGoogle Scholar
  299. 299.
    J. Lesgourgues, The Cosmic Linear Anisotropy Solving System (CLASS) I: Overview, arXiv: 1104.2932 [astroph. CO]Google Scholar
  300. 300.
    D. Blas, J. Lesgourgues, and T. Tram, The Cosmic Linear Anisotropy Solving System (CLASS) II: Approximation schemes, arXiv: 1104.2933 [astro-ph.CO]Google Scholar
  301. 301.
    J. Lesgourgues, The Cosmic Linear Anisotropy Solving System (CLASS) III: Comparision with CAMB for LambdaCDM, arXiv: 1104.2934 [astro-ph.CO]Google Scholar
  302. 302.
    J. Lesgourgues and T. Tram, The Cosmic Linear Anisotropy Solving System (CLASS) IV: Efficient implementation of non-cold relics, arXiv: 1104.2935 [astroph. CO]Google Scholar
  303. 303.
    J. Lesgourgues, The Cosmic Linear Anisortropy Solving System (CLASS) III: Comparison with CMB for LambdaCDM, arXiv: 1104.2934 [astro-ph.CO]Google Scholar
  304. 304.
    The Planck news release on the epoch of the first stars can be found at Space_Science/Planck/Planck_reveals_first_stars_ were_born_late. See also the news report from the University of Cambridge: news/planck-reveals-first-stars-were-born-lateGoogle Scholar
  305. 305.
    The list of Planck publications is at http://www. Scholar
  306. 306.
    S. Zaroubi, The Epoch of Reionization, arXiv: 1206.0267 [astro-ph.CO]Google Scholar
  307. 307.
    D. Scott and G. F. Smoot, Cosmic Microwave Background, PDB [13]Google Scholar
  308. 308.
    P. A. R. Ade, et al. (Planck Collaboration), Planck 2013 results. I. Overview of products and scientific results, Astron. Astrophys. 571, A1 (2014), arXiv: 1303.5062 [astro-ph.CO]CrossRefGoogle Scholar
  309. 309.
    P. A. R. Ade, et al. (Planck Collaboration), Planck 2013 results. XV. CMB power spectra and likelihood, Astron. Astrophys. 571, A15 (2014), arXiv: 1303.5075 [astroph. CO]CrossRefGoogle Scholar
  310. 310.
    G. Hinshaw, et al. (WMAP Collaboration), Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results, Astrophys. J. Suppl. 208, 19 (2013), arXiv: 1212.5226 [asrtroph. CO]ADSCrossRefGoogle Scholar
  311. 311.
    C. L. Bennett, et al. (WMAP Collaboration), Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Final Maps and Results, Astrophys. J. Suppl. 208, 20 (2013), arXiv: 1212.5225 [astro-ph.CO]ADSCrossRefGoogle Scholar
  312. 312.
    For a list of WMAP scientific publications, see: _bibliography.cfmGoogle Scholar
  313. 313.
    D. Larson, J. L. Weiland, G. Hinshaw, and C. L. Bennett, Comparing Planck and WMAP9: Maps, Spectra, and Parameters, arXiv: 1409.7718 [astro-ph.CO]Google Scholar
  314. 314.
    D. W. Hogg, Distance measures in cosmology, arXiv: astro-ph/9905116Google Scholar
  315. 315.
    T. M. Davis and C. H. Lineweaver, Expanding Confusion: common misconceptions of cosmological horizons and the superluminal expansion of the Universe, PASA 21, 97 (2004), arXiv: astro-ph/0310808ADSCrossRefGoogle Scholar
  316. 316.
    C. H. Lineweaver and T. M. Davis, Misconceptions about the big bang, Sci. Am. 292(3), 24 (2005)CrossRefGoogle Scholar
  317. 317.
    W. Rindler, Visual Horizons in World models, Mon. Not. Roy. Ast. Soc. 116, 662 (1956)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  318. 318.
    A. Loeb, The Long-Term Future of Extragalactic Astronomy, Phys. Rev. D 65, 047301 (2002), arXiv: astroph/ 0107568ADSCrossRefGoogle Scholar
  319. 319. #.UexHS237tuDGoogle Scholar
  320. 320.
    H. Bradt and S. Olbert, Liouville’s Theorem, Suppl. to Ch. 3 of Astrophysical Processes by the same authors. The article can be found at edu/scranmer/Ay201a_2014/LecNotes/supp_liouville_ Bradt.pdfGoogle Scholar
  321. 321.
    J. D. Jackson, Classical Electrodynamics, Second Edition, John Wiley & Sons, Inc., 1975zbMATHGoogle Scholar
  322. 322.
    H. Goldstein, Classical Mechanics, Addison-Wesley, 1950, pp 266–268Google Scholar
  323. 323.
    C. Kittel and H. Kroemer, Thermal Physics, W.H. Freeman and Company, 1998Google Scholar
  324. 324.
    S. Dodelson and M. S. Turner, Nonequilibrium neutrino statistical mechanics in the expanding Universe, Phys. Rev. D 46(8), 3372 (1992)ADSCrossRefGoogle Scholar
  325. 325.
    Wolfram Alpha, Wolfram Research Company: http://www.wolframalpha.comGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  1. 1.Department of Physics and AstronomyIowa State UniversityAmesUSA

Personalised recommendations