Advertisement

Frontiers of Physics

, 11:110304 | Cite as

Quantum superreplication of states and gates

  • Giulio ChiribellaEmail author
  • Yuxiang Yang
Open Access
Review Article
Part of the following topical collections:
  1. Quantum Communication, Measurement, and Computing

Abstract

Although the no-cloning theorem forbids perfect replication of quantum information, it is sometimes possible to produce large numbers of replicas with vanishingly small error. This phenomenon, known as quantum superreplication, can occur for both quantum states and quantum gates. The aim of this paper is to review the central features of quantum superreplication and provide a unified view of existing results. The paper also includes new results. In particular, we show that when quantum superreplication can be achieved, it can be achieved through estimation up to an error of size O(M/N 2), where N and M are the number of input and output copies, respectively. Quantum strategies still offer an advantage for superreplication in that they allow for exponentially faster reduction of the error. Using the relation with estimation, we provide i) an alternative proof of the optimality of Heisenberg scaling in quantum metrology, ii) a strategy for estimating arbitrary unitary gates with a mean square error scaling as log N/N 2, and iii) a protocol that generates O(N 2) nearly perfect copies of a generic pure state U |0〉 while using the corresponding gate U only N times. Finally, we point out that superreplication can be achieved using interactions among k systems, provided that k is large compared to M 2/N 2.

Keywords

quantum cloning quantum metrology quantum superreplication Heisenberg limit quantum networks 

References

  1. 1.
    W. Wootters and W. Zurek, A single quantum cannot be cloned, Nature 299(sn5886), 802 (1982)ADSCrossRefGoogle Scholar
  2. 2.
    D. Dieks, Communication by EPR devices, Phys. Lett. A 92(6), 271 (1982)ADSCrossRefGoogle Scholar
  3. 3.
    V. Scarani, S. Iblisdir, N. Gisin, and A. Acin, Quantum cloning, Rev. Mod. Phys. 77(4), 1225 (2005)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    N. J. Cerf and J. Fiurásek, Optical quantum cloning, Progress in Optics 49, 455 (2006)CrossRefGoogle Scholar
  5. 5.
    C. Bennett and G. Brassard, Quantum cryptography: Public key distribution and coin tossing, in: Conference on Computers, Systems and Signal Processing (Bangalore, India), pp 175–179, 1984Google Scholar
  6. 6.
    A. Ekert, Quantum cryptography based on Bells theorem, Phys. Rev. Lett. 67(6), 661 (1991)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    S. Wiesner, Conjugate coding, ACM Sigact News 15(1), 78 (1983)CrossRefzbMATHGoogle Scholar
  8. 8.
    M. Hillery, V. Buzek, and A. Berthiaume, Quantum secret sharing, Phys. Rev. A 59(3), 1829 (1999)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    V. Buzek and M. Hillery, Quantum copying: Beyond the no-cloning theorem, Phys. Rev. A 54(3), 1844 (1996)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    N. Gisin and S. Massar, Optimal quantum cloning machines, Phys. Rev. Lett. 79(11), 2153 (1997)ADSCrossRefGoogle Scholar
  11. 11.
    D. Bruss, A. Ekert, and C. Macchiavello, Optimal universal quantum cloning and state estimation, Phys. Rev. Lett. 81(12), 2598 (1998)ADSCrossRefGoogle Scholar
  12. 12.
    J. Bae and A. Acín, Asymptotic quantum cloning is state estimation, Phys. Rev. Lett. 97(sn3), 030402 (2006)Google Scholar
  13. 13.
    G. Chiribella and G. M. D’Ariano, Quantum information becomes classical when distributed to many users, Phys. Rev. Lett. 97(sn25), 250503 (2006)Google Scholar
  14. 14.
    G. Chiribella, On quantum estimation, quantum cloning and finite quantum de Finetti theorems, in: Theory of Quantum Computation, Communication, and Cryptography, Lecture Notes in Computer Science, Volume 6519, pp 9–25, Springer, 2011CrossRefGoogle Scholar
  15. 15.
    G. Chiribella and Y. Yang, Optimal asymptotic cloning machines, New J. Phys. 16(6), 063005 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    S. L. Braunstein, C. A. Fuchs, and H. J. Kimble, Criteria for continuous-variable quantum teleportation, J. Mod. Opt. 47(2-3), 267 (2000)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    K. Hammerer, M. M. Wolf, E. S. Polzik, and J. I. Cirac, Quantum benchmark for storage and transmission of coherent states, Phys. Rev. Lett. 94(15), 150503 (2005)ADSCrossRefGoogle Scholar
  18. 18.
    G. Adesso and G. Chiribella, Quantum benchmark for teleportation and storage of squeezed states, Phys. Rev. Lett. 100(17), 170503 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    G. Chiribella and J. Xie, Optimal design and quantum benchmarks for coherent state amplifiers, Phys. Rev. Lett. 110(21), 213602 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    G. Chiribella and G. Adesso, Quantum benchmarks for pure single-mode Gaussian states, Phys. Rev. Lett. 112(1), 010501 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    H. Fan, Y. N. Wang, L. Jing, J. D. Yue, H. D. Shi, Y. L. Zhang, and L. Z. Mu, Quantum cloning machines and the applications, Phys. Rep. 544(3), 241 (2014)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    L. M. Duan and G. C. Guo, Probabilistic cloning and identification of linearly independent quantum states, Phys. Rev. Lett. 80(22), 4999 (1998)ADSCrossRefGoogle Scholar
  23. 23.
    J. FiuráSek, Optimal probabilistic cloning and purification of quantum states, Phys. Rev. A 70(sn3), 032308 (2004)ADSCrossRefGoogle Scholar
  24. 24.
    T. Ralph and A. Lund, Nondeterministic noiseless linear amplification of quantum systems, in: Ninth International Conference on Quantum Communication, Measurement and Computing (QCMC), Volume 1110, pp 155–160, AIP Publishing, 2009Google Scholar
  25. 25.
    G. Y. Xiang, T. C. Ralph, A. P. Lund, N. Walk, and G. J. Pryde, Heralded noiseless linear amplification and distillation of entanglement, Nat. Photonics 4(5), 316 (2010)CrossRefGoogle Scholar
  26. 26.
    F. Ferreyrol, M. Barbieri, R. Blandino, S. Fossier, R. Tualle- Brouri, and P. Grangier, Implementation of a nondeterministic optical noiseless amplifier, Phys. Rev. Lett. 104(12), 123603 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    M. A. Usuga, C. R. Müller, C. Wittmann, P. Marek, R. Filip, C. Marquardt, G. Leuchs, and U. L. Andersen, Noisepowered probabilistic concentration of phase information, Nat. Phys. 6(10), 767 (2010)CrossRefGoogle Scholar
  28. 28.
    A. Zavatta, J. Fiurásek, and M. Bellini, A high-fidelity noiseless amplifier for quantum light states, Nat. Photonics 5(sn1), 52 (2011)ADSCrossRefGoogle Scholar
  29. 29.
    G. Chiribella, Y. Yang, and A. C. C. Yao, Quantum replication at the Heisenberg limit, Nat. Commun. 4(2915) (2013)Google Scholar
  30. 30.
    V. Giovannetti, S. Lloyd, and L. Maccone, Quantumenhanced measurements: Beating the standard quantum limit, Science 306(sn5700), 1330 (2004)ADSCrossRefGoogle Scholar
  31. 31.
    A. Winter, Coding theorem and strong converse for quantum channels, IEEE Transactions on Information Theory 45(sn7), 2481 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    G. Chiribella, G. M. D’Ariano, and P. Perinotti, Optimal cloning of unitary transformation, Phys. Rev. Lett. 101(18), 180504 (2008)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    W. Dür, P. Sekatski, and M. Skotiniotis, Deterministic superreplication of one-parameter unitary transformations, Phys. Rev. Lett. 114(12), 120503 (2015)CrossRefGoogle Scholar
  34. 34.
    G. Chiribella, Y. Yang, and C. Huang, Universal superreplication of unitary gates, Phys. Rev. Lett. 114(12), 120504 (2015)ADSCrossRefGoogle Scholar
  35. 35.
    G. Chiribella, G. M. D’Ariano, P. Perinotti, and M. F. Sacchi, Efficient use of quantum resources for the transmission of a reference frame, Phys. Rev. Lett. 93(18), 180503 (2004)ADSCrossRefGoogle Scholar
  36. 36.
    E. Bagan, M. Baig, and R. Munoz-Tapia, Quantum reverse engineering and reference-frame alignment without nonlocal correlations, Phys. Rev. A 70(sn3), 030301 (2004)ADSCrossRefGoogle Scholar
  37. 37.
    M. Hayashi, Parallel treatment of estimation of SU(2) and phase estimation, Phys. Lett. A 354(3), 183 (2006)ADSCrossRefGoogle Scholar
  38. 38.
    J. Kahn, Fast rate estimation of a unitary operation in SU(d), Phys. Rev. A 75(2), 022326 (2007)ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    H. Fan, K. Matsumoto, X. B. Wang, and M. Wadati, Quantum cloning machines for equatorial qubits, Phys. Rev. A 65(1), 012304 (2001)ADSCrossRefGoogle Scholar
  40. 40.
    D. Bruß, M. Cinchetti, G. Mauro D’Ariano, and C. Macchiavello, Phase-covariant quantum cloning, Phys. Rev. A 62(1), 012302 (2000)ADSCrossRefGoogle Scholar
  41. 41.
    G. M. D’Ariano and C. Macchiavello, Optimal phasecovariant cloning for qubits and qutrits, Phys. Rev. A 67(4), 042306 (2003)ADSCrossRefGoogle Scholar
  42. 42.
    R. F. Reinhard, Optimal cloning of pure states, Phys. Rev. A 58(3), 1827 (1998)CrossRefGoogle Scholar
  43. 43.
    E. B. Davies and J. T. Lewis, An operational approach to quantum probability, Commun. Math. Phys. 17(3), 239 (1970)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    M. Ozawa, Quantum measuring processes of continuous observables, J. Math. Phys. 25(1), 79 (1984)ADSMathSciNetCrossRefGoogle Scholar
  45. 45.
    Y. Yang and G. Chiribella, Optimal energy-preserving conversions of quantum coherence, arXiv: 1502.00259, 2015Google Scholar
  46. 46.
    S. Pandey, Z. Jiang, J. Combes, and C. Caves, Quantum limits on probabilistic amplifiers, Phys. Rev. A 88(3), 033852 (2013)ADSCrossRefGoogle Scholar
  47. 47.
    H. Everett, “Relative state” formulation of quantum mechanics, Rev. Mod. Phys. 29(sn3), 454 (1957)ADSMathSciNetCrossRefGoogle Scholar
  48. 48.
    E. Stueckelberg, Quantum theory in real Hilbert space, Helvetica Physica Acta 33, 727 (1960)MathSciNetzbMATHGoogle Scholar
  49. 49.
    L. Hardy and W. K. Wootters, Limited holism and realvector- space quantum theory, Found. Phys. 42(3), 454 (2012)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    W. Wootters, Optimal information transfer and real-vectorspace quantum theory, arXiv: 1301.2018, 2013Google Scholar
  51. 51.
    Y. N. Wang, H. D. Shi, Z. X. Xiong, L. Jing, X. J. Ren, L. Z. Mu, and H. Fan, Unified universal quantum cloning machine and fidelities, Phys. Rev. A 84(3), 034302 (2011)ADSCrossRefGoogle Scholar
  52. 52.
    S. Braunstein, N. Cerf, S. Iblisdir, P. van Loock, and S. Massar, Optimal cloning of coherent states with a linear amplifier and beam splitters, Phys. Rev. Lett. 86(21), 4938 (2001)ADSCrossRefGoogle Scholar
  53. 53.
    B. Gendra, J. Calsamiglia, R. Muñoz-Tapia, E. Bagan, and G. Chiribella, Probabilistic metrology attains macroscopic cloning of quantum clocks, Phys. Rev. Lett. 113(26), 260402 (2014)ADSCrossRefGoogle Scholar
  54. 54.
    B. Gendra, E. Ronco-Bonvehi, J. Calsamiglia, R. Munoz- Tapia, and E. Bagan, Quantum metrology assisted by abstention, Phys. Rev. Lett. 110(10), 100501 (2013)ADSCrossRefGoogle Scholar
  55. 55.
    G. M. D’Ariano, C. Macchiavello, and M. Rossi, Quantum cloning by cellular automata, Phys. Rev. A 87(3), 032337 (2013)ADSCrossRefGoogle Scholar
  56. 56.
    W. Fulton and J. Harris, Representation Theory: A First Course, Volume 129, Springer Science & Business Media, 1991zbMATHGoogle Scholar
  57. 57.
    R. Alicki, S. Rudnicki, and S. Sadowski, Symmetry properties of product states for the system of Nn-level atoms, J. Math. Phys. 29(5), 1158 (1988)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  58. 58.
    P.-L. Méliot, Kerov’s central limit theorem for Schur–Weyl measures of parameter 1/2, arXiv: 1009.4034, 2010Google Scholar
  59. 59.
    I. Marvian and R. Spekkens, A generalization of Schur–Weyl duality with applications in quantum estimation, Commun. Math. Phys. 331(sn2), 431 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  60. 60.
    A. W. Harrow, Applications of coherent classical communication and the Schur transform to quantum information theory, PhD thesis, Massachusetts Institute of Technology, 2005Google Scholar
  61. 61.
    Y. Yang, D. Ebler, and G. Chiribella, Efficient quantum compression for ensembles of identically prepared mixed states, arXiv: 1506.03542, 2015Google Scholar
  62. 62.
    I. L. Chuang and D. Gottesman, Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations, Nature 402(sn6760), 390 (1999)ADSCrossRefGoogle Scholar
  63. 63.
    M. Horodecki, P. Horodecki, and R. Horodecki, General teleportation channel, singlet fraction, and quasidistillation, Phys. Rev. A 60(3), 1888 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  64. 64.
    P. Sekatski, M. Skotiniotis, and W. Dür, No-signaling bounds for quantum cloning and metrology, Phys. Rev. A 92(sn2), 022355 (2015)ADSCrossRefGoogle Scholar
  65. 65.
    M. A. Nielsen and I. L. Chuang, Programmable quantum gate arrays, Phys. Rev. Lett. 79(2), 321 (1997)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  66. 66.
    T. Rudolph and L. Grover, Quantum communication complexity of establishing a shared reference frame, Phys. Rev. Lett. 91(21), 217905 (2003)ADSCrossRefGoogle Scholar
  67. 67.
    A. Holevo, Probabilistic and Statistical Aspects of Quantum Theory, North-Holland, 1982zbMATHGoogle Scholar
  68. 68.
    V. Buzek, R. Derka, and S. Massar, Optimal quantum clocks, Phys. Rev. Lett. 82(10), 2207 (1999)ADSCrossRefGoogle Scholar
  69. 69.
    D. Berry and H. M. Wiseman, Optimal states and almost optimal adaptive measurements for quantum interferometry, Phys. Rev. Lett. 85(24), 5098 (2000)ADSCrossRefGoogle Scholar
  70. 70.
    G. Chiribella, G. M. D’Ariano, and P. Perinotti, Memory effects in quantum channel discrimination, Phys. Rev. Lett. 101(18), 180501 (2008)ADSMathSciNetCrossRefGoogle Scholar
  71. 71.
    U. Dorner, R. Demkowicz-Dobrzanski, B. J. Smith, J. S. Lundeen, W. Wasilewski, K. Banaszek, and I. A. Walmsley, Optimal quantum phase estimation, Phys. Rev. Lett. 102(4), 040403 (2009)ADSCrossRefGoogle Scholar
  72. 72.
    B. M. Escher, R. L. de Matos Filho, and L. Davidovich, General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology, Nat. Phys. 7(5), 406 (2011)CrossRefGoogle Scholar
  73. 73.
    R. Demkowicz-Dobrzanski, J. Ko’lodynski, and M. Gu, The elusive Heisenberg limit in quantum-enhanced metrology, Nat. Commun. 3, 1063 (2012)ADSCrossRefGoogle Scholar
  74. 74.
    R. Chaves, J. B. Brask, M. Markiewicz, J. Ko’lodynski, and A. Acön, Noisy metrology beyond the standard quantum limit, Phys. Rev. Lett. 111(sn12), 120401 (2013)ADSCrossRefGoogle Scholar
  75. 75.
    R. Demkowicz-Dobrzanski and L. Maccone, Using entanglement against noise in quantum metrology, Phys. Rev. Lett. 113(25), 250801 (2014)ADSCrossRefGoogle Scholar
  76. 76.
    W. Kumagai and M. Hayashi, A new family of probability distributions and asymptotics of classical and locc conversions, arXiv: 1306.4166, 2013Google Scholar
  77. 77.
    M. Ozawa, Conservative quantum computing, Phys. Rev. Lett. 89(5), 057902 (2002)ADSCrossRefGoogle Scholar
  78. 78.
    J. Gea-Banacloche and M. Ozawa, Constraints for quantum logic arising from conservation laws and field uctuations, J. Opt. B 7(10), S326 (2005)ADSCrossRefGoogle Scholar
  79. 79.
    M. Ahmadi, D. Jennings, and T. Rudolph, The Wigner- Araki-Yanase theorem and the quantum resource theory of asymmetry, New J. Phys. 15(1), 013057 (2013)ADSMathSciNetCrossRefGoogle Scholar
  80. 80.
    I. Marvian and R. Spekkens, The theory of manipulations of pure state asymmetry (I): Basic tools, equivalence classes and single copy transformations, New J. Phys. 15(3), 033001 (2013)ADSCrossRefGoogle Scholar
  81. 81.
    I. Marvian and R. W. Spekkens, Extending Noethers theorem by quantifying the asymmetry of quantum states, Nat. Commun. 5 (3821) (2014)Google Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.Department of Computer ScienceThe University of Hong KongHong KongChina

Personalised recommendations