Frontiers of Physics

, 11:117801 | Cite as

Graphene-plasmon polaritons: From fundamental properties to potential applications

  • Sanshui XiaoEmail author
  • Xiaolong Zhu
  • Bo-Hong Li
  • N. Asger MortensenEmail author
Open Access
Review Article
Part of the following topical collections:
  1. Special Topic: Frontiers of Plasmonics (Ed. Hong-Xing Xu)


With unique possibilities for controlling light in nanoscale devices, graphene plasmonics has opened new perspectives to the nanophotonics community with potential applications in metamaterials, modulators, photodetectors, and sensors. In this paper, we briefly review the recent exciting progress in graphene plasmonics. We begin with a general description of the optical properties of graphene, particularly focusing on the dispersion of graphene-plasmon polaritons. The dispersion relation of graphene-plasmon polaritons of spatially extended graphene is expressed in terms of the local response limit with an intraband contribution. With this theoretical foundation of graphene-plasmon polaritons, we then discuss recent exciting progress, paying specific attention to the following topics: excitation of graphene plasmon polaritons, electron-phonon interactions in graphene on polar substrates, and tunable graphene plasmonics with applications in modulators and sensors. Finally, we address some of the apparent challenges and promising perspectives of graphene plasmonics.


graphene plasmonics graphene-plasmon polariton plasmon-phonon interaction tunability 


  1. 1.
    S. A. Maier, Plasmonics: Fundamentals and Applications, New York: Springer, 2007Google Scholar
  2. 2.
    M. L. Brongersma, Introductory lecture: Nanoplasmonics, Faraday Discuss. 178, 9 (2015)CrossRefGoogle Scholar
  3. 3.
    J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, Plasmonics for extreme light concentration and manipulation, Nat. Mater. 9(3), 193 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    Editorial, Focusing in on applications, Nature Nanotechnol. 10, 1 (2015)Google Scholar
  5. 5.
    A. Baev, P. N. Prasad, H. Ågren, M. Samoć, and M. Wegener, Metaphotonics: An emerging field with opportunities and challenges, Phys. Rep. 594, 1 (2015)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    D. K. Gramotnev and S. I. Bozhevolnyi, Plasmonics beyond the diffraction limit, Nat. Photonics 4(2), 83 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    D. K. Gramotnev and S. I. Bozhevolnyi, Nanofocusing of electromagnetic radiation, Nat. Photonics 8, 13 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    S. Xiao and N. A. Mortensen, Surface-plasmon-polaritoninduced suppressed transmission through ultrathin metal disk arrays, Opt. Lett. 36(1), 37 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    S. Xiao, J. Zhang, L. Peng, C. Jeppesen, R. Malureanu, A. Kristensen, and N. A. Mortensen, Nearly zero transmission through periodically modulated ultrathin metal films, Appl. Phys. Lett. 97(7), 071116 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    C. L. C. Smith, N. Stenger, A. Kristensen, N. A. Mortensen, and S. I. Bozhevolnyi, Gap and channeled plasmons in tapered grooves: A review, Nanoscale 7(21), 9355 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, Channel plasmon subwavelength waveguide components including interferometers and ring resonators, Nature 440(7083), 508 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    D. Ansell, I. P. Radko, Z. Han, F. J. Rodriguez, S. I. Bozhevolnyi, and A. N. Grigorenko, Hybrid graphene plasmonic waveguide modulators, Nat. Commun. 6, 8846 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    S. Xiao, L. Liu, and M. Qiu, Resonator channel drop filters in a plasmon-polaritons metal, Opt. Express 14(7), 2932 (2006)ADSCrossRefGoogle Scholar
  14. 14.
    H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering, Phys. Rev. Lett. 83(21), 4357 (1999)ADSCrossRefGoogle Scholar
  15. 15.
    D. Punj, M. Mivelle, S. B. Moparthi, T. S. van Zanten, H. Rigneault, N. F. van Hulst, M. F. García-Parajó, and J. Wenger, A plasmonic “antenna-in-box” platform for enhanced single-molecule analysis at micromolar concentrations, Nat. Nanotechnol. 8(7), 512 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    S. Kawata, Y. Inouye, and P. Verma, Plasmonics for nearfield nano-imaging and superlensing, Nat. Photonics 3(7), 388 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    F. Wei, D. Lu, H. Shen, W. Wan, J. L. Ponsetto, E. Huang, and Z. Liu, Wide field super-resolution surface imaging through plasmonic structured illumination microscopy, Nano Lett. 14(8), 4634 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    H. A. Atwater and A. Polman, Plasmonics for improved photovoltaic devices, Nat. Mater. 9(3), 205 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    S. Xiao, E. Stassen, and N. A. Mortensen, Ultrathinsilicon solar cells with enhanced photocurrentsassisted by plasmonic nanostructures, J. Nanophot. 6, 061503 (2012)CrossRefGoogle Scholar
  20. 20.
    K. Kumar, H. Duan, R. S. Hegde, S. C. W. Koh, J. N. Wei, and J. K. W. Yang, Printing colour at the optical diffraction limit, Nat. Nanotechnol. 7(9), 557 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    J. S. Clausen, E. Højlund-Nielsen, A. B. Christiansen, S. Yazdi, M. Grajower, H. Taha, U. Levy, A. Kristensen, and N. A. Mortensen, Plasmonic metasurfaces for coloration of plastic consumer products, Nano Lett. 14(8), 4499 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    X. Zhu, C. Vannahme, E. Højlund-Nielsen, N. A. Mortensen, and A. Kristensen, Plasmonic colour laser printing, Nat. Nanotechnol. doi:10.1038/nnano.2015.285 (2016)Google Scholar
  23. 23.
    J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, Biosensing with plasmonic nanosensors, Nat. Mater. 7(6), 442 (2008)ADSCrossRefGoogle Scholar
  24. 24.
    M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, A graphene-based broadband optical modulator, Nature 474(7349), 64 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, et al., Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems, Nanoscale 7(11), 4598 (2015)ADSCrossRefGoogle Scholar
  26. 26.
    A. N. Grigorenko, M. Polini, and K. S. Novoselov, Graphene plasmonics, Nat. Photonics 6, 749 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    Y. V. Bludov, A. Ferreira, N. M. R. Peres, and M. I. Vasilevskiy, A primer on surface plasmon-polaritons in graphene, Int. J. Mod. Phys. B 27(10), 1341001 (2013)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    F. J. García de Abajo, Graphene plasmonics: Challenges and opportunities, ACS Photonics 1(3), 135 (2014)CrossRefGoogle Scholar
  29. 29.
    T. Low and P. Avouris, Graphene plasmonics for terahertz to mid-infrared applications, ACS Nano 8(2), 1086 (2014)CrossRefGoogle Scholar
  30. 30.
    A. Vakil and N. Engheta, Transformation optics using graphene, Science 332(6035), 1291 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    H. Raether, Surface Plasmons on Smooth and Rough Surfaces on Gratings, Berlin: Springer, 1988Google Scholar
  32. 32.
    Y. Ding, X. Zhu, S. Xiao, H. Hu, L. H. Frandsen, N. A. Mortensen, and K. Yvind, Effective electro-optical modulation with high extinction ratio by a graphene-silicon microring resonator, Nano Lett. 15(7), 4393 (2015)ADSCrossRefGoogle Scholar
  33. 33.
    C. T. Phare, Y.-H. D. Lee, J. Cardenas, and M. Lipson, Graphene electro-optic modulator with 30 GHz bandwidth, Nat. Photonics 9, 511 (2015)ADSCrossRefGoogle Scholar
  34. 34.
    I. Goykhman, U. Sassi, B. Desiatov, N. Mazurski, S. Milana, D. de Fazio, A. Eiden, J. Khurgin, J. Shappir, U. Levy, and A. C. Ferrari, On-chip integrated, silicon-graphene plasmonic Schottky photodetector, with high responsivity and avalanche photogain, arXiv: 1512.08153Google Scholar
  35. 35.
    F. H. Koppens, D. E. Chang, and F. J. García de Abajo, Graphene plasmonics: A platform for strong light-matter interactions, Nano Lett. 11(8), 3370 (2011)CrossRefGoogle Scholar
  36. 36.
    S. Thongrattanasiri, A. Manjavacas, and F. J. García de Abajo, Quantum finite-size effects in graphene plasmons, ACS Nano 6(2), 1766 (2012)CrossRefGoogle Scholar
  37. 37.
    T. Christensen, W. Wang, A.-P. Jauho, M. Wubs, and N. A. Mortensen, Classical and quantum plasmonics in graphene nanodisks: The role of edge states, Phys. Rev. B 90, 241414(R) (2014)ADSCrossRefGoogle Scholar
  38. 38.
    S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, Switching terahertz waves with gate-controlled active graphene metamaterials, Nat. Mater. 11(11), 936 (2012)ADSCrossRefGoogle Scholar
  39. 39.
    B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, Broadband graphene terahertz modulators enabled by intraband transitions, Nat. Commun. 3, 780 (2012)ADSCrossRefGoogle Scholar
  40. 40.
    G. Liang, X. Hu, X. Yu, Y. Shen, L. H. Li, A. G. Davies, E. H. Linfield, H. K. Liang, Y. Zhang, S. F. Yu, and Q. J. Wang, Integrated terahertz graphene modulator with 100% modulation depth, ACS Photonics 2(11), 1559 (2015)CrossRefGoogle Scholar
  41. 41.
    L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, Graphene plasmonics for tunable terahertz metamaterials, Nat. Nanotechnol. 6(10), 630 (2011)ADSCrossRefGoogle Scholar
  42. 42.
    A. Marini, I. Silveiro, and F. J. García de Abajo, Molecular sensing with tunable graphene plasmons, ACS Photonics 2(7), 876 (2015)CrossRefGoogle Scholar
  43. 43.
    D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García de Abajo, V. Pruneri, and H. Altug, Mid-infrared plasmonic biosensing with graphene, Science 349(6244), 165 (2015)ADSCrossRefGoogle Scholar
  44. 44.
    C. F. Chen, C. H. Park, B. W. Boudouris, J. Horng, B. Geng, C. Girit, A. Zettl, M. F. Crommie, R. A. Segalman, S. G. Louie, and F. Wang, Controlling inelastic light scattering quantum pathways in graphene, Nature 471(7340), 617 (2011)ADSCrossRefGoogle Scholar
  45. 45.
    I. Khrapach, F. Withers, T. H. Bointon, D. K. Polyushkin, W. L. Barnes, S. Russo, and M. F. Craciun, Novel highly conductive and transparent graphene-based conductors, Adv. Mater. 24(21), 2844 (2012)CrossRefGoogle Scholar
  46. 46.
    T. Christensen, From classical to quantum plasmonics in three and two dimensions, PhD Thesis, Technical University of Denmark, 2015Google Scholar
  47. 47.
    A. Bostwick, T. Ohta, T. Seyller, K. Horn, and E. Rotenberg, Quasiparticle dynamics in graphene, Nat. Phys. 3(1), 36 (2007)CrossRefGoogle Scholar
  48. 48.
    A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, The electronic properties of graphene, Rev. Mod. Phys. 81(1), 109 (2009)ADSCrossRefGoogle Scholar
  49. 49.
    R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, Fine structure constant defines visual transparency of graphene, Science 320(5881), 1308 (2008)ADSCrossRefGoogle Scholar
  50. 50.
    S. A. Mikhailov and K. Ziegler, New electromagnetic mode in graphene, Phys. Rev. Lett. 99(1), 016803 (2007)ADSCrossRefGoogle Scholar
  51. 51.
    M. Jablan, H. Buljan, and M. Soljačić, Plasmonics in graphene at infrared frequencies, Phys. Rev. B 80(24), 245435 (2009)ADSCrossRefGoogle Scholar
  52. 52.
    B. Wunsch, T. Stauber, F. Sols, and F. Guinea, Dynamical polarization of graphene at finite doping, New J. Phys. 8(12), 318 (2006)ADSCrossRefGoogle Scholar
  53. 53.
    E. H. Hwang and S. Das Sarma, Dielectric function, screening, and plasmons in two-dimensional graphene, Phys. Rev. B 75(20), 205418 (2007)ADSCrossRefGoogle Scholar
  54. 54.
    L. A. Falkovsky and A. A. Varlamov, Space-time dispersion of graphene conductivity, Eur. Phys. J. B 56(4), 281 (2007)ADSCrossRefGoogle Scholar
  55. 55.
    S. Raza, S. I. Bozhevolnyi, M. Wubs, and N. A. Mortensen, Nonlocal optical response in metallic nanostructures, J. Phys.: Condens. Matter 27(18), 183204 (2015)ADSGoogle Scholar
  56. 56.
    J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. L. Koppens, Optical nano-imaging of gate-tunable graphene plasmons, Nature 487(7405), 77 (2012)ADSGoogle Scholar
  57. 57.
    Q. Zhang, X. Li, M. M. Hossain, Y. Xue, J. Zhang, J. Song, J. Liu, M. D. Turner, S. Fan, Q. Bao, and M. Gu, Graphene surface plasmons at the near-infrared optical regime, Sci. Rep. 4, 6559 (2014)ADSCrossRefGoogle Scholar
  58. 58.
    X. Zhu, W. Yan, P. U. Jepsen, O. Hansen, N. A. Mortensen, and S. Xiao, Experimental observation of plasmons in a graphene monolayer resting on a two-dimensional subwavelength silicon grating, Appl. Phys. Lett. 102(13), 131101 (2013)ADSCrossRefGoogle Scholar
  59. 59.
    M. Farhat, S. Guenneau, and H. Baǧcı, Exciting graphene surface plasmon polaritons through light and sound interplay, Phys. Rev. Lett. 111(23), 237404 (2013)ADSCrossRefGoogle Scholar
  60. 60.
    H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, Tunable infrared plasmonic devices using graphene/insulator stacks, Nat. Nanotechnol. 7(5), 330 (2012)ADSCrossRefGoogle Scholar
  61. 61.
    Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, Gate-tuning of graphene plasmons revealed by infrared nano-imaging, Nature 487(7405), 82 (2012)ADSGoogle Scholar
  62. 62.
    Z. Fei, G. O. Andreev, W. Bao, L. M. Zhang, A. S. McLeod, C. Wang, M. K. Stewart, Z. Zhao, G. Dominguez, M. Thiemens, M. M. Fogler, M. J. Tauber, A. H. Castro-Neto, C. N. Lau, F. Keilmann, and D. N. Basov, Infrared nanoscopy of Dirac plasmons at the graphene-SiO2 interface, Nano Lett. 11(11), 4701 (2011)ADSCrossRefGoogle Scholar
  63. 63.
    G. X. Ni, H. Wang, J. S. Wu, Z. Fei, M. D. Goldflam, F. Keilmann, B. Özyilmaz, A. H. Castro Neto, X. M. Xie, M. M. Fogler, and D. N. Basov, Plasmons in graphene Moiré superlattices, Nat. Mater. 14(12), 1217 (2015)ADSCrossRefGoogle Scholar
  64. 64.
    E. Yoxall, M. Schnell, A. Y. Nikitin, O. Txoperena, A. Woessner, M. B. Lundeberg, F. Casanova, L. E. Hueso, F. H. L. Koppens, and R. Hillenbrand, Direct observation of ultraslow hyperbolic polariton propagation with negative phase velocity, Nat. Photonics 9(10), 674 (2015)ADSCrossRefGoogle Scholar
  65. 65.
    P. Li, M. Lewin, A. V. Kretinin, J. D. Caldwell, K. S. Novoselov, T. Taniguchi, K. Watanabe, F. Gaussmann, and T. Taubner, Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging and focusing, Nat. Commun. 6, 7507 (2015)ADSCrossRefGoogle Scholar
  66. 66.
    P. Alonso-González, A. Y. Nikitin, F. Golmar, A. Centeno, A. Pesquera, S. Vélez, J. Chen, G. Navickaite, F. Koppens, A. Zurutuza, F. Casanova, L. E. Hueso, and R. Hillenbrand, Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns, Science 344(6190), 1369 (2014)ADSCrossRefGoogle Scholar
  67. 67.
    A. Y. Nikitin, P. Alonso-González, and R. Hillenbrand, Efficient coupling of light to graphene plasmons by compressing surface polaritons with tapered bulk materials, Nano Lett. 14(5), 2896 (2014)ADSCrossRefGoogle Scholar
  68. 68.
    K. Y. M. Yeung, J. Chee, H. Yoon, Y. Song, J. Kong, and D. Ham, Far-infrared graphene plasmonic crystals for plasmonic band engineering, Nano Lett. 14(5), 2479 (2014)ADSCrossRefGoogle Scholar
  69. 69.
    W. Gao, J. Shu, C. Qiu, and Q. Xu, Excitation of plasmonic waves in graphene by guided-mode resonances, ACS Nano 6(9), 7806 (2012)CrossRefGoogle Scholar
  70. 70.
    W. Gao, G. Shi, Z. Jin, J. Shu, Q. Zhang, R. Vajtai, P. M. Ajayan, J. Kono, and Q. Xu, Excitation and active control of propagating surface plasmon polaritons in graphene, Nano Lett. 13(8), 3698 (2013)ADSCrossRefGoogle Scholar
  71. 71.
    J. Schiefele, J. Pedrós, F. Sols, F. Calle, and F. Guinea, Coupling light into graphene plasmons through surface acoustic waves, Phys. Rev. Lett. 111(23), 237405 (2013)ADSCrossRefGoogle Scholar
  72. 72.
    T. Christensen, A. P. Jauho, M. Wubs, and N. A. Mortensen, Localized plasmons in graphene-coated nanospheres, Phys. Rev. B 91(12), 125414 (2015)ADSCrossRefGoogle Scholar
  73. 73.
    W. Wang, B. Li, E. Stassen, N. A. Mortensen, and J. Christensen, Localized surface plasmons in vibrating graphene nanodisks, Nanoscale, 2016, DOI: 10.1039/C5NR08812G, arXiv: 1502.00535Google Scholar
  74. 74.
    A. Reserbat-Plantey, K. G. Schädler, L. Gaudreau, G. Navickaite, J. Güttinger, D. Chang, C. Toninelli, A. Bachtold, and F. H. L. Koppens, Electromechanical control of nitrogen-vacancy defect emission using graphene NEMS, Nat. Commun. 7, 10218 (2016)ADSCrossRefGoogle Scholar
  75. 75.
    D. Smirnova, S. H. Mousavi, Z. Wang, Y. S. Kivshar, and A. B. Khanikaev, Trapping and guiding surface plasmons in curved graphene landscapes, arXiv: 1508.02729Google Scholar
  76. 76.
    M. Jablan, M. Soljačić, and H. Buljan, Unconventional plasmon-phonon coupling in graphene, Phys. Rev. B 83(16), 161409 (2011)ADSCrossRefGoogle Scholar
  77. 77.
    Y. Liu and R. F. Willis, Plasmon-phonon strongly coupled mode in epitaxial graphene, Phys. Rev. B 81(8), 081406 (2010)ADSCrossRefGoogle Scholar
  78. 78.
    H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, Damping pathways of midinfrared plasmons in graphene nanostructures, Nat. Photonics 7(5), 394 (2013)ADSCrossRefGoogle Scholar
  79. 79.
    X. Zhu, W. Wang, W. Yan, M. B. Larsen, P. Bøggild, T. G. Pedersen, S. Xiao, J. Zi, and N. A. Mortensen, Plasmonphonon coupling in large-area graphene dot and antidot arrays fabricated by nanosphere lithography, Nano Lett. 14(5), 2907 (2014)ADSCrossRefGoogle Scholar
  80. 80.
    V. W. Brar, M. S. Jang, M. Sherrott, S. Kim, J. J. Lopez, L. B. Kim, M. Choi, and H. Atwater, Hybrid surface-phononplasmon polariton modes in graphene/monolayer h-BN heterostructures, Nano Lett. 14(7), 3876 (2014)ADSCrossRefGoogle Scholar
  81. 81.
    K. Bolotin, K. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. Stormer, Ultrahigh electron mobility in suspended graphene, Solid State Commun. 146(9–10), 351 (2008)ADSCrossRefGoogle Scholar
  82. 82.
    S. Fratini and F. Guinea, Substrate-limited electron dynamics in graphene, Phys. Rev. B 77(19), 195415 (2008)ADSCrossRefGoogle Scholar
  83. 83.
    K. Hess and P. Vogl, Remote polar phonon scattering in silicon inversion layers, Solid State Commun. 30(12), 807 (1979)ADSCrossRefGoogle Scholar
  84. 84.
    C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, Boron nitride substrates for high-quality graphene electronics, Nat. Nanotechnol. 5(10), 722 (2010)ADSCrossRefGoogle Scholar
  85. 85.
    S. Pisana, M. Lazzeri, C. Casiraghi, K. S. Novoselov, A. K. Geim, A. C. Ferrari, and F. Mauri, Breakdown of the adiabatic Born-Oppenheimer approximation in graphene, Nat. Mater. 6(3), 198 (2007)ADSCrossRefGoogle Scholar
  86. 86.
    A. Mooradian and G. B. Wright, Observation of the interaction of plasmons with longitudinal optical phonons in GaAs, Phys. Rev. Lett. 16(22), 999 (1966)ADSCrossRefGoogle Scholar
  87. 87.
    E. H. Hwang, R. Sensarma, and S. Das Sarma, Plasmonphonon coupling in graphene, Phys. Rev. B82(19), 195406 (2010)ADSCrossRefGoogle Scholar
  88. 88.
    R. J. Koch, T. Seyller, and J. A. Schaefer, Strong phononplasmon coupled modes in the graphene/silicon carbide heterosystem, Phys. Rev. B 82(20), 201413 (2010)ADSCrossRefGoogle Scholar
  89. 89.
    I. Forbeaux, J. M. Themlin, and J. M. Debever, Heteroepitaxial graphite on 6H-SiC(0001): Interface formation through conduction-band electronic structure, Phys. Rev. B 58(24), 16396 (1998)ADSCrossRefGoogle Scholar
  90. 90.
    Y. Ou, X. Zhu, V. Jokubavicius, R. Yakimova, N. A. Mortensen, M. Syväjärvi, S. Xiao, and H. Ou, Broadband antireflection and light extraction enhancement in fluorescent SiC with nanodome structures, Sci. Rep. 4, 4662 (2014)ADSGoogle Scholar
  91. 91.
    X. Zhu, Y. Ou, V. Jokubavicius, M. Syvajarvi, O. Hansen, H. Ou, N. A. Mortensen, and S. Xiao, Broadband lightextraction enhanced by arrays of whispering gallery resonators, Appl. Phys. Lett. 101(24), 241108 (2012)ADSCrossRefGoogle Scholar
  92. 92.
    X. Zhu, C. Zhang, X. Liu, O. Hansen, S. Xiao, N. A. Mortensen, and J. Zi, Evaporation of water droplets on “lock-and-key” structures with nanoscale features, Langmuir 28(25), 9201 (2012)CrossRefGoogle Scholar
  93. 93.
    X. Zhu, F. Xie, L. Shi, X. Liu, N. A. Mortensen, S. Xiao, J. Zi, and W. Choy, Broadband enhancement of spontaneous emission in a photonic-plasmonic structure, Opt. Lett. 37(11), 2037 (2012)ADSCrossRefGoogle Scholar
  94. 94.
    X. Zhu, S. Xiao, L. Shi, X. Liu, J. Zi, O. Hansen, and N. A. Mortensen, A stretch-tunable plasmonic structure with a polarization-dependent response, Opt. Express 20(5), 5237 (2012)ADSCrossRefGoogle Scholar
  95. 95.
    Y. Li, H. Yan, D. B. Farmer, X. Meng, W. Zhu, R. M. Osgood, T. F. Heinz, and P. Avouris, Graphene plasmon enhanced vibrational sensing of surface-adsorbed layers, Nano Lett. 14(3), 1573 (2014)ADSCrossRefGoogle Scholar
  96. 96.
    I. D. Barcelos, A. R. Cadore, L. C. Campos, A. Malachias, K. Watanabe, T. Taniguchi, F. C. Maia, R. Freitas, and C. Deneke, Graphene/h-BN plasmon-phonon coupling and plasmon delocalization observed by infrared nanospectroscopy, Nanoscale 7(27), 11620 (2015)ADSCrossRefGoogle Scholar
  97. 97.
    V. W. Brar, M. S. Jang, M. Sherrott, J. J. Lopez, and H. A. Atwater, Highly confined tunable mid-infrared plasmonics in graphene nanoresonators, Nano Lett. 13(6), 2541 (2013)ADSCrossRefGoogle Scholar
  98. 98.
    M. M. Jadidi, A. B. Sushkov, R. L. Myers-Ward, A. K. Boyd, K. M. Daniels, D. K. Gaskill, M. S. Fuhrer, H. D. Drew, and T. E. Murphy, Tunable terahertz hybrid metal-graphene plasmons, Nano Lett. 15(10), 7099 (2015)ADSCrossRefGoogle Scholar
  99. 99.
    M. K. Hedayati, A. U. Zillohu, T. Strunskus, F. Faupel, and M. Elbahri, Plasmonic tunable metamaterial absorber as ultraviolet protection film, Appl. Phys. Lett. 104(4), 041103 (2014)ADSCrossRefGoogle Scholar
  100. 100.
    D. Franklin, Y. Chen, A. Vazquez-Guardado, S. Modak, J. Boroumand, D. Xu, S. T. Wu, and D. Chanda, Polarizationindependent actively tunable colour generation on imprinted plasmonic surfaces, Nat. Commun. 6, 7337 (2015)ADSCrossRefGoogle Scholar
  101. 101.
    A. Yang, T. B. Hoang, M. Dridi, C. Deeb, M. H. Mikkelsen, G. C. Schatz, and T. W. Odom, Real-time tunable lasing from plasmonic nanocavity arrays, Nat. Commun. 6, 6939 (2015)ADSCrossRefGoogle Scholar
  102. 102.
    G. C. Dyer, G. R. Aizin, S. J. Allen, A. D. Grine, D. Bethke, J. L. Reno, and E. A. Shaner, Induced transparency by coupling of Tamm and defect states in tunable terahertz plasmonic crystals, Nat. Photonics 7(11), 925 (2013)ADSCrossRefGoogle Scholar
  103. 103.
    B. Fluegel, A. Mascarenhas, D. W. Snoke, L. N. Pfeiffer, and K. West, Plasmonic all-optical tunable wavelength shifter, Nat. Photonics 1(12), 701 (2007)ADSCrossRefGoogle Scholar
  104. 104.
    Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, Gated tunability and hybridization of localized plasmons in nanostructured graphene, ACS Nano 7(3), 2388 (2013)CrossRefGoogle Scholar
  105. 105.
    V. W. Brar, M. C. Sherrott, M. S. Jang, S. Kim, L. Kim, M. Choi, L. A. Sweatlock, and H. A. Atwater, Electronic modulation of infrared radiation in graphene plasmonic resonators, Nat. Commun. 6, 7032 (2015)ADSCrossRefGoogle Scholar
  106. 106.
    N. A. Mortensen, S. Xiao, and J. Pedersen, Liquid-infiltrated photonic crystals: Enhanced light-matter interactions for lab-on-a-chip applications, Microfluid. Nanofluidics 4(1), 117 (2008)CrossRefGoogle Scholar
  107. 107.
    L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms, Nano Lett. 6(9), 2060 (2006)ADSCrossRefGoogle Scholar
  108. 108.
    C. Jeppesen, S. Xiao, N. A. Mortensen, and A. Kristensen, Metamaterial localized resonance sensors: Prospects and limitations, Opt. Express 18(24), 25075 (2010)ADSCrossRefGoogle Scholar
  109. 109.
    M. Freitag, T. Low, W. Zhu, H. Yan, F. Xia, and P. Avouris, Photocurrent in graphene harnessed by tunable intrinsic plasmons, Nat. Commun. 4, 1951 (2013)ADSCrossRefGoogle Scholar
  110. 110.
    X. Zhu, L. Shi, M. S. Schmidt, A. Boisen, O. Hansen, J. Zi, S. Xiao, and N. A. Mortensen, Enhanced light-matter interactions in graphene-covered gold nanovoid arrays, Nano Lett. 13(10), 4690 (2013)ADSCrossRefGoogle Scholar
  111. 111.
    J. Kim, H. Son, D. J. Cho, B. Geng, W. Regan, S. Shi, K. Kim, A. Zettl, Y. R. Shen, and F. Wang, Electrical control of optical plasmon resonance with graphene, Nano Lett. 12(11), 5598 (2012)ADSCrossRefGoogle Scholar
  112. 112.
    S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, Inductive tuning of Fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared, Nano Lett. 13(3), 1111 (2013)ADSCrossRefGoogle Scholar
  113. 113.
    J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, M. Muoth, A. P. Seitsonen, M. Saleh, X. Feng, K. Müllen, and R. Fasel, Atomically precise bottom-up fabrication of graphene nanoribbons, Nature 466(7305), 470 (2010)ADSCrossRefGoogle Scholar
  114. 114.
    X. Li, X. Wang, L. Zhang, S. Lee, and H. Dai, Chemically derived, ultrasmooth graphene nanoribbon semiconductors, Science 319(5867), 1229 (2008)ADSCrossRefGoogle Scholar
  115. 115.
    S. Rasappa, J. M. Caridad, L. Schulte, A. Cagliani, D. Borah, M. A. Morris, P. Bøggild, and S. Ndoni, High quality sub-10 nm graphene nanoribbons by on-chip PS-b-PDMS block copolymer lithography, RSC Adv. 5, 66711 (2015)CrossRefGoogle Scholar
  116. 116.
    W. Wang, T. Christensen, A. P. Jauho, K. S. Thygesen, M. Wubs, and N. A. Mortensen, Plasmonic eigenmodes in individual and bow-tie graphene nanotriangles, Sci. Rep. 5, 9535 (2015)ADSCrossRefGoogle Scholar
  117. 117.
    A. Woessner, M. B. Lundeberg, Y. Gao, A. Principi, P. Alonso-González, M. Carrega, K. Watanabe, T. Taniguchi, G. Vignale, M. Polini, J. Hone, R. Hillenbrand, and F. H. L. Koppens, Highly confined low-loss plasmons in grapheneboron nitride heterostructures, Nat. Mater. 14(4), 421 (2015)ADSCrossRefGoogle Scholar
  118. 118.
    K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306, 666 (2004)ADSCrossRefGoogle Scholar
  119. 119.
    Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Experimental observation of the quantum Hall effect and Berry’s phase in graphene, Nature 438(7065), 201 (2005)ADSCrossRefGoogle Scholar
  120. 120.
    Y. Hao, M. S. Bharathi, L. Wang, Y. Liu, H. Chen, S. Nie, X. Wang, H. Chou, C. Tan, B. Fallahazad, H. Ramanarayan, C. W. Magnuson, E. Tutuc, B. I. Yakobson, K. F. McCarty, Y. W. Zhang, P. Kim, J. Hone, L. Colombo, and R. S. Ruoff, The role of surface oxygen in the growth of large singlecrystal graphene on copper, Science 342(6159), 720 (2013)ADSCrossRefGoogle Scholar
  121. 121.
    T. Wu, X. Zhang, Q. Yuan, J. Xue, G. Lu, Z. Liu, H. Wang, H. Wang, F. Ding, Q. Yu, X. Xie, and M. Jiang, Fast growth of inch-sized single-crystalline graphene from a controlled single nucleus on Cu-Ni alloys, Nat. Mater. 15(1), 43 (2016)ADSCrossRefGoogle Scholar
  122. 122.
    J. L. Cheng, N. Vermeulen, and J. E. Sipe, Third order optical nonlinearity of graphene, New J. Phys. 16(5), 053014 (2014)ADSCrossRefGoogle Scholar
  123. 123.
    N. M. R. Peres, Y. V. Bludov, J. E. Santos, A. P. Jauho, and M. I. Vasilevskiy, Optical bistability of graphene in the terahertz range, Phys. Rev. B 90(12), 125425 (2014)ADSCrossRefGoogle Scholar
  124. 124.
    D. A. Smirnova, I. V. Shadrivov, A. E. Miroshnichenko, A. I. Smirnov, and Y. S. Kivshar, Second-harmonic generation by a graphene nanoparticle, Phys. Rev. B 90(3), 035412 (2014)ADSCrossRefGoogle Scholar
  125. 125.
    T. Christensen, W. Yan, A.-P. Jauho, M. Wubs, and N. A. Mortensen, Kerr nonlinearity and plasmonic bistability in graphene nanoribbons, Phys. Rev. B 92, 121407(R) (2015)ADSCrossRefGoogle Scholar
  126. 126.
    J. D. Cox and F. Javier García de Abajo, Electrically tunable nonlinear plasmonics in graphene nanoislands, Nat. Commun. 5, 5725 (2014)ADSCrossRefGoogle Scholar
  127. 127.
    J. D. Cox and F. J. García de Abajo, Plasmon-enhanced nonlinear wave mixing in nanostructured graphene, ACS Photonics 2(2), 306 (2015)CrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of Photonics EngineeringTechnical University of DenmarkLyngbyDenmark
  2. 2.Center for Nanostructured GrapheneTechnical University of DenmarkLyngbyDenmark
  3. 3.Department of Micro and NanotechnologyTechnical University of DenmarkLyngbyDenmark

Personalised recommendations