Advertisement

Frontiers of Physics

, 11:117402 | Cite as

Spatial modulation of unitary impurity-induced resonances in superconducting CeCoIn5

  • Ge Zhang
  • Bin Liu
  • Yi-Feng Yang
  • Shiping Feng
Research Article
  • 72 Downloads

Abstract

Motivated by recent experimental progress in high-resolution scanning tunneling microscopy (STM) techniques, we investigate the local quasiparticle density of states around a unitary impurity in the heavy-fermion superconductor CeCoIn5. Based on the T-matrix approach we obtain a sharp nearly zero-energy resonance state in the strong impurity potential scattering localized around the impurity and find qualitative differences in the spatial pattern of the tunneling conductance modulated by the nodal structure of the superconducting gap. These unique features may be used as a probe of the superconducting gap symmetry and, in combination with further STM measurements, may help to confirm the \({d_{{x^2} - {y^2}}}\) pairing in CeCoIn5 at ambient pressure.

Keywords

pairing symmetries effects of disorder tunneling phenomena 

References

  1. 1.
    D. J. Scalapino, A common thread: The pairing interaction for unconventional superconductors, Rev. Mod. Phys. 84(4), 1383 (2012)CrossRefADSGoogle Scholar
  2. 2.
    Ø. Fischer, M. Kugler, I. Maggio-Aprile, C. Berthod, and C. Renner, Scanning tunneling spectroscopy of hightemperature superconductors, Rev. Mod. Phys. 79(1), 353 (2007)CrossRefADSGoogle Scholar
  3. 3.
    B. D. White, J. D. Thompson, and M. B. Maple, Unconventional superconductivity in heavy-fermion compounds, Physica C 514, 246 (2015)CrossRefADSGoogle Scholar
  4. 4.
    G. Knebel, D. Aoki, and J. Flouquet, Antiferromagnetism and superconductivity in cerium based heavy-fermion compounds, C. R. Phys. 12(5–6), 542 (2011)CrossRefADSGoogle Scholar
  5. 5.
    G. Stewart, Non-Fermi-liquid behavior in d- and f-electron metals, Rev. Mod. Phys. 73(4), 797 (2001)CrossRefADSGoogle Scholar
  6. 6.
    G. Stewart, Heavy-fermion systems, Rev. Mod. Phys. 56(4), 755 (1984)CrossRefADSGoogle Scholar
  7. 7.
    F. Steglich, J. Aarts, C. D. Bredl, W. Lieke, D. Meschede, W. Franz, and H. Schafer, Superconductivity in the presence of strong Pauli paramagnetism: CeCu2Si2, Phys. Rev. Lett. 43(25), 1892 (1979)CrossRefADSGoogle Scholar
  8. 8.
    S. Kittaka, Y. Aoki, Y. Shimura, T. Sakakibara, S. Seiro, C. Geibel, F. Steglich, H. Ikeda, and K. Machida, Multiband superconductivity with unexpected deficiency of nodal quasiparticles in CeCu2Si2, Phys. Rev. Lett. 112(6), 067002 (2014)CrossRefADSGoogle Scholar
  9. 9.
    H. Ikeda, M. Suzuki, and R. Arita, Emergent loop-nodal s±-wave superconductivity in CeCu2Si2: Similarities to the iron-based superconductors, Phys. Rev. Lett. 114(14), 147003 (2015)CrossRefADSGoogle Scholar
  10. 10.
    H. Hegger, C. Petrovic, E. G. Moshopoulou, M. F. Hundley, J. L. Sarrao, Z. Fisk, and J. D. Thompson, Pressureinduced superconductivity in quasi-2D CeRhIn5, Phys. Rev. Lett. 84(21), 4986 (2000)CrossRefADSGoogle Scholar
  11. 11.
    C. Petrovic, P. G. Pagliuso, M. F. Hundley, R. Movshovich, J. L. Sarrao, J. D. Thompson, Z. Fisk, and P. Monthoux, Heavy-fermion superconductivity in CeCoIn5 at 2.3 K, J. Phys.: Condens. Matter 13(17), L337 (2001)CrossRefADSGoogle Scholar
  12. 12.
    C. Petrovic, R. Movshovich, M. Jaime, P. G. Pagliuso, M. F. Hundley, J. L. Sarrao, Z. Fisk, and J. D. Thompson, A new heavy-fermion superconductor CeIrIn5: Relative of the cuprates? Europhys. Lett. 53(3), 354 (2001)CrossRefADSGoogle Scholar
  13. 13.
    A. McCollam, S. R. Julian, P. M. C. Rourke, D. Aoki, and J. Flouquet, Anomalous de Haas–van Alphen Oscillations in CeCoIn5, Phys. Rev. Lett. 94(18), 186401 (2005)CrossRefADSGoogle Scholar
  14. 14.
    T. Shang, R. E. Baumbach, K. Gofryk, F. Ronning, Z. F. Weng, J. L. Zhang, X. Lu, E. D. Bauer, J. D. Thompson, and H. Q. Yuan, CeIrIn5: Superconductivity on a magnetic instability, Phys. Rev. B 89(4), 041101 (2014)CrossRefADSGoogle Scholar
  15. 15.
    J. S. van Dyke, F. Massee, M. P. Allan, J. C. S. Davisb, C. Petrovic, and D. K. Morr, Direct evidence for a magnetic f-electron-mediated pairing mechanism of heavy-fermion superconductivity in CeCoIn5, Proc. Natl. Acad. Sci. USA 111(32), 11663 (2014)CrossRefADSGoogle Scholar
  16. 16.
    M. P. Allan, F. Massee, D. K. Morr, J. van Dyke, A. W. Rost, A. P. Mackenzie, C. Petrovic, and J. C. Davis, Imaging Cooper pairing of heavy fermions in CeCoIn5, Nat. Phys. 9(8), 468 (2013)CrossRefGoogle Scholar
  17. 17.
    B. B. Zhou, S. Misra, E. H. da Silva Neto, P. Aynajian, R. E. Baumbach, J. D. Thompson, E. D. Bauer, and A. Yazdani, Visualizing nodal heavy fermion superconductivity in CeCoIn5, Nat. Phys. 9(8), 474 (2013)CrossRefGoogle Scholar
  18. 18.
    T. Hu, H. Xiao, T. A. Sayles, M. Dzero, M. B. Maple, and C. C. Almasan, Strong magnetic fluctuations in a superconducting state of CeCoIn5, Phys. Rev. Lett. 108(5), 056401 (2012)CrossRefADSGoogle Scholar
  19. 19.
    M. Kenzelmann, S. Gerber, N. Egetenmeyer, J. L. Gavilano, Th. Strässle, A. D. Bianchi, E. Ressouche, R. Movshovich, E. D. Bauer, J. L. Sarrao, and J. D. Thompson, Evidence for a magnetically driven superconducting Q phase of CeCoIn5, Phys. Rev. Lett. 104(12), 127001 (2010)CrossRefADSGoogle Scholar
  20. 20.
    X. Lu, H. Lee, T. Park, F. Ronning, E. D. Bauer, and J. D. Thompson, Heat-capacity measurements of energy-gap nodes of the heavy-fermion superconductor CeIrIn5 deep inside the pressure-dependent dome structure of its superconducting phase diagram, Phys. Rev. Lett. 108(2), 027001 (2012)CrossRefADSGoogle Scholar
  21. 21.
    T. Park, H. Lee, I.Martin, X. Lu, V. A. Sidorov, K. Gofryk, F. Ronning, E. D. Bauer, and J. D. Thompson, Textured superconducting phase in the heavy fermion CeRhIn5, Phys. Rev. Lett. 108(7), 077003 (2012)CrossRefADSGoogle Scholar
  22. 22.
    Y. Kohori, Y. Yamato, Y. Iwamoto, T. Kohara, E. D. Bauer, M. B. Maple, and J. L. Sarrao, NMR and NQR studies of the heavy fermion superconductors CeTIn5 (T = Co and Ir), Phys. Rev. B 64(13), 134526 (2001)CrossRefADSGoogle Scholar
  23. 23.
    Y. Matsuda and K. Izawa, Determination of the directions of gap nodes in exotic superconductors, Physica C 388–389, 487 (2003)CrossRefGoogle Scholar
  24. 24.
    Matsuda and K. Izawa, Nodal structure of unconventional superconductors determined by thermal conductivity, J. Low Temp. Phys. 131, 429 (2003)Google Scholar
  25. 25.
    K. Izawa, H. Yamaguchi, Y. Matsuda, H. Shishido, R. Settai, and Y. Onuki, Angular position of nodes in the superconducting gap of quasi-2D heavy-fermion superconductor CeCoIn5, Phys. Rev. Lett. 87(5), 057002 (2001)CrossRefADSGoogle Scholar
  26. 26.
    H. Aoki, T. Sakakibara, H. Shishido, R. Settai, Y. Nuki, P. Miranovi, and K. Machida, Field-angle dependence of the zero-energy density of states in the unconventional heavyfermion superconductor CeCoIn5, J. Phys.: Condens. Matter 16(3), L13 (2004)ADSGoogle Scholar
  27. 27.
    K. An, T. Sakakibara, R. Settai, Y. Onuki, M. Hiragi, M. Ichioka, and K. Machida, Sign reversal of field-angle resolved heat capacity oscillations in a heavy fermion superconductor CeCoIn5 and \({d_{{x^2} - {y^2}}}\) pairing symmetry, Phys. Rev. Lett. 104(3), 037002 (2010)CrossRefADSGoogle Scholar
  28. 28.
    R. Ikeda and H. Adachi, Modulated vortex lattice in high fields and gap nodes, Phys. Rev. B 69(21), 212506 (2004)CrossRefADSGoogle Scholar
  29. 29.
    C. Stock, C. Broholm, J. Hudis, H. J. Kang, and C. Petrovic, Spin resonance in the d-wave superconductor CeCoIn5, Phys. Rev. Lett. 100(8), 087001 (2008)CrossRefADSGoogle Scholar
  30. 30.
    I. Eremin, G. Zwicknagl, P. Thalmeier, and P. Fulde, Feedback spin resonance in superconducting CeCu2Si2 and CeCoIn5, Phys. Rev. Lett. 101(18), 187001 (2008)CrossRefADSGoogle Scholar
  31. 31.
    N. Hiasa and R. Ikeda, Instability of square vortex lattice in d-wave superconductors is due to paramagnetic depairing, Phys. Rev. Lett. 101(2), 027001 (2008)CrossRefADSGoogle Scholar
  32. 32.
    W. K. Park, J. L. Sarrao, J. D. Thompson, and L. H. Greene, Andreev reflection in heavy-fermion superconductors and order parameter symmetry in CeCoIn5, Phys. Rev. Lett. 100(17), 177001 (2008)CrossRefADSGoogle Scholar
  33. 33.
    A. Vorontsov and I. Vekhter, Nodal structure of quasi-twodimensional superconductors probed by a magnetic field, Phys. Rev. Lett. 96(23), 237001 (2006)CrossRefADSGoogle Scholar
  34. 34.
    A. Vorontsov and I. Vekhter, Unconventional superconductors under a rotating magnetic field (I): Density of states and specific heat, Phys. Rev. B 75(22), 224501 (2007)CrossRefADSGoogle Scholar
  35. 35.
    F. Ronning, J. X. Zhu, T. Das, M. J. Graf, R. C. Albers, H. B. Rhee, and W. E. Pickett, Superconducting gap structure of the 115s revisited, J. Phys.: Condens. Matter 24(29), 294206 (2012)Google Scholar
  36. 36.
    T. Das, A. B. Vorontsov, I. Vekhter, and M. J. Graf, Fieldangle-resolved anisotropy in superconducting CeCoIn5 using realistic Fermi surfaces, Phys. Rev. B 87(17), 174514 (2013)CrossRefADSGoogle Scholar
  37. 37.
    B. Liu, Nonmagnetic impurity resonance states as a test of superconducting pairing symmetry in CeCoIn5, Phys. Rev. B 88(24), 245127 (2013)CrossRefADSGoogle Scholar
  38. 38.
    A. Koitzsch, I. Opahle, S. Elgazzar, S. V. Borisenko, J. Geck, V. B. Zabolotnyy, D. Inosov, H. Shiozawa, M. Richter, M. Knupfer, J. Fink, B. Büchner, E. D. Bauer, J. L. Sarrao, and R. Follath, Electronic structure of CeCoIn5 from angleresolved photoemission spectroscopy, Phys. Rev. B 79(7), 075104 (2009)CrossRefADSGoogle Scholar
  39. 39.
    P. Aynajian, E. H. da Silva Neto, A. Gyenis, R. E. Baumbach, J. D. Thompson, Z. Fisk, E. D. Bauer, and A. Yazdani, Visualizing heavy fermions emerging in a quantum critical Kondo lattice, Nature 486(7402), 201 (2012)CrossRefADSGoogle Scholar
  40. 40.
    S. Ernst, S. Wirth, F. Steglich, Z. Fisk, J. L. Sarrao, and J. D. Thompson, Scanning tunneling microscopy studies on CeCoIn5 and CeIrIn5, Phys. Status Solidi 247(3), 624 (2010)CrossRefGoogle Scholar
  41. 41.
    A. V. Balatsky, I. Vekhter, and J. X. Zhu, Impurity-induced states in conventional and unconventional superconductors, Rev. Mod. Phys. 78(2), 373 (2006)CrossRefADSGoogle Scholar
  42. 42.
    T. Maehira, T. Hotta, K. Ueda, and A. Hasegawa, Relativistic band-structure calculations for CeTIn5 (T = Ir and Co) and analysis of the energy bands by using tight-binding method, J. Phys. Soc. Jpn. 72(4), 854 (2003)CrossRefADSGoogle Scholar
  43. 43.
    Y. Öuki, R. Settai, K. Sugiyama, T. Takeuchi, T. C. Kobayashi, Y. Haga, and E. Yamamoto, Recent advances in the magnetism and superconductivity of heavy fermion systems, J. Phys. Soc. Jpn. 73(4), 769 (2004)CrossRefADSGoogle Scholar
  44. 44.
    Y. Haga, Y. Inada, H. Harima, K. Oikawa, M. Murakawa, H. Nakawaki, Y. Tokiwa, D. Aoki, H. Shishido, S. Ikeda, N. Watanabe, and Y. Onuki, Quasi-two-dimensional Fermi surfaces of the heavy fermion superconductor CeIrIn5, Phys. Rev. B 63(6), 060503 (2001)CrossRefADSGoogle Scholar
  45. 45.
    D. Hall, E. C. Palm, T. P. Murphy, S. W. Tozer, C. Petrovic, E. Miller-Ricci, L. Peabody, C. Li, U. Alver, R. G. Goodrich, J. L. Sarrao, P. G. Pagliuso, J. M. Wills, and Z. Fisk, Electronic structure of CeRhIn5: de Haas–van Alphen and energy band calculations, Phys. Rev. B 64(6), 064506 (2001)CrossRefADSGoogle Scholar
  46. 46.
    H. Shishido, T. Ueda, S. Hashimoto, T. Kubo, R. Settai, H. Harima, and Y. Onuki, A de Haas–van Alphen experiment under pressure on CeCoIn5: Deviation from the quantum critical region, J. Phys.: Condens. Matter 15(32), L499 (2003)Google Scholar
  47. 47.
    L. Dudy, J. D. Denlinger, L. Shu, M. Janoschek, J. W. Allen, and M. B. Maple, Yb valence change in Ce1−xYbxCoIn5 from spectroscopy and bulk properties, Phys. Rev. B 88(16), 165118 (2013)CrossRefADSGoogle Scholar
  48. 48.
    K. Tanaka, H. Ikeda, Y. Nisikawa, and K. Yamada, Theory of superconductivity in CeMIn5 (M=Co, Rh, Ir) on the basis of the three dimensional periodic Anderson model, J. Phys. Soc. Jpn. 75(2), 024713 (2006)CrossRefADSGoogle Scholar
  49. 49.
    S. H. Pan, E. W. Hudson, K. M. Lang, H. Eisaki, S. Uchida, and J. C. Davis, Experimental test of quantum nonlocality in three-photon Greenberger–Horne–Zeilinger entanglement, Nature 403(6769), 746 (2000)CrossRefADSGoogle Scholar
  50. 50.
    S. H. Pan, J. P. O’Neal, R. L. Badzey, C. Chamon, H. Ding, J. R. Engelbrecht, Z. Wang, H. Eisaki, S. Uchida, A. K. Gupta, K. W. Ng, E. W. Hudson, K. M. Lang, and J. C. Davis, Microscopic electronic inhomogeneity in the high-T c superconductor Bi2Sr2CaCu2O8+x, Nature 413(6853), 282 (2001)CrossRefADSGoogle Scholar
  51. 51.
    E. W. Hudson, K. M. Lang, V. Madhavan, S. H. Pan, H. Eisaki, S. Uchida, and J. C. Davis, Interplay of magnetism and high-T c superconductivity at individual Ni impurity atoms in Bi2Sr2CaCu2O8+d, Nature 411(6840), 920 (2001)CrossRefADSGoogle Scholar
  52. 52.
    S. Haas and K. Maki, Quasiparticle bound states around impurities in \({d_{{x^2} - {y^2}}}\)-wave superconductors, Phys. Rev. Lett. 85(10), 2172 (2000)CrossRefADSGoogle Scholar
  53. 53.
    A. Yazdani, B. A. Jones, C. P. Lutz, M. F. Crommie, and D. M. Eigler, Probing the local effects of magnetic impurities on superconductivity, Science 275(5307), 1767 (1997)CrossRefGoogle Scholar
  54. 54.
    M. I. Salkola, A. V. Balatsky, and J. R. Schrieffer, Spectral properties of quasiparticle excitations induced by magnetic moments in superconductors, Phys. Rev. B 55(18), 12648 (1997)CrossRefADSGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Ge Zhang
    • 1
  • Bin Liu
    • 1
  • Yi-Feng Yang
    • 2
    • 3
  • Shiping Feng
    • 4
  1. 1.Department of PhysicsBeijing Jiaotong UniversityBeijingChina
  2. 2.Beijing National Laboratory for Condensed Matter Physics and Institute of PhysicsChinese Academy of SciencesBeijingChina
  3. 3.Collaborative Innovation Center of Quantum MatterBeijingChina
  4. 4.Department of PhysicsBeijing Normal UniversityBeijingChina

Personalised recommendations