Advertisement

Frontiers of Physics

, 11:117804 | Cite as

A polarizing situation: Taking an in-plane perspective for next-generation near-field studies

  • P. James Schuck
  • Wei Bao
  • Nicholas J. Borys
Open Access
Review Article
Part of the following topical collections:
  1. Special Topic: Frontiers of Plasmonics

Abstract

By enabling the probing of light–matter interactions at the functionally relevant length scales of most materials, near-field optical imaging and spectroscopy accesses information that is unobtainable with other methods. The advent of apertureless techniques, which exploit the ultralocalized and enhanced near-fields created by sharp metallic tips or plasmonic nanoparticles, has resulted in rapid adoption of near-field approaches for studying novel materials and phenomena, with spatial resolution approaching sub-molecular levels. However, these approaches are generally limited by the dominant out-of-plane polarization response of apertureless tips, restricting the exploration and discovery of many material properties. This has led to recent design and fabrication breakthroughs in near-field tips engineered specifically for enhancing in-plane interactions with near-field light components. This mini-review provides a perspective on recent progress and emerging directions aimed at utilizing and controlling in-plane optical polarization, highlighting key application spaces where in-plane near-field tip responses have enabled recent advancements in the understanding and development of new nanostructured materials and devices.

Keywords

near-field optical microscopy nano-optics TERS plasmonics optical antenna 2D materials 

References

  1. 1.
    L. Novotny and B. Hecht, Principles of Nano-Optics, Cambridge: Cambridge University Press, 2006CrossRefGoogle Scholar
  2. 2.
    S. Kawata, Y. Inouye, and P. Verma, Plasmonics for nearfield nano-imaging and superlensing, Nat. Photonics 3(7), 388 (2009)CrossRefADSGoogle Scholar
  3. 3.
    M. A. Paesler and P. J. Moyer, Near-Field Optics: Theory, Instrumentation and Applications, New York: Wiley, 1996Google Scholar
  4. 4.
    J. M. Atkin, S. Berweger, A. C. Jones, and M. B. Raschke, Nano-optical imaging and spectroscopy of order, phases, and domains in complex solids, Adv. Phys. 61(6), 745 (2012)CrossRefADSGoogle Scholar
  5. 5.
    M. Fleischer, Near-field scanning optical microscopy nanoprobes, Nanotechnology Reviews 1(4), 313 (2012)CrossRefGoogle Scholar
  6. 6.
    P. J. Schuck, A. Weber-Bargioni, P. D. Ashby, D. F. Ogletree, A. Schwartzberg, and S. Cabrini, Life beyond diffraction: Opening new routes to materials characterization with next-generation optical near-field approaches, Adv. Funct. Mater. 23(20), 2539 (2013)CrossRefGoogle Scholar
  7. 7.
    N. Mauser and A. Hartschuh, Tip-enhanced near-field optical microscopy, Chem. Soc. Rev. 43(4), 1248 (2014)CrossRefGoogle Scholar
  8. 8.
    A. V. Zayats and D. Richards (Eds.), Nano-Optics and Near-Field Optical Microscopy, Artech House, 2008Google Scholar
  9. 9.
    R. C. Dunn, Near-field scanning optical microscopy, Chem. Rev. 99(10), 2891 (1999)CrossRefGoogle Scholar
  10. 10.
    M. I. Stockman, Nanoplasmonics: The physics behind the applications, Phys. Today 64(2), 39 (2011)CrossRefGoogle Scholar
  11. 11.
    A. Hartschuh, Tip-enhanced near-field optical microscopy, Angew. Chem. Int. Ed. 47(43), 8178 (2008)CrossRefGoogle Scholar
  12. 12.
    B. S. Yeo, J. Stadler, T. Schmid, R. Zenobi, and W. H. Zhang, Tip-enhanced Raman spectroscopy–Its status, challenges and future directions, Chem. Phys. Lett. 472(1–3), 1 (2009)CrossRefADSGoogle Scholar
  13. 13.
    B. Pettinger, P. Schambach, C. J. Villagomez, and N. Scott, Tip-enhanced Raman spectroscopy: Near-fields acting on a few molecules, in: Annual Review of Physical Chemistry, M. A. Johnson and T. J. Martinez (Eds.), 2012, pp 379–399Google Scholar
  14. 14.
    K. Joulain, R. Carminati, J. P. Mulet, and J. J. Greffet, Definition and measurement of the local density of electromagnetic states close to an interface, Phys. Rev. B 68(24), 245405 (2003)CrossRefADSGoogle Scholar
  15. 15.
    R. Beams, D. Smith, T. W. Johnson, S. H. Oh, L. Novotny, and A. N. Vamivakas, Nanoscale fluorescence lifetime imaging of an optical antenna with a single diamond NV center, Nano Lett. 13(8), 3807 (2013)CrossRefADSGoogle Scholar
  16. 16.
    R. Carminati, A. Caze, D. Cao, F. Peragut, V. Krachmalnicoff, R. Pierrat, and Y. DeWilde, Electromagnetic density of states in complex plasmonic systems, Surf. Sci. Rep. 70(1), 1 (2015)CrossRefADSGoogle Scholar
  17. 17.
    N. Rotenberg and L. Kuipers, Mapping nanoscale light fields, Nat. Photonics 8(12), 919 (2014)CrossRefADSGoogle Scholar
  18. 18.
    M. Schnell, A. Garcia-Etxarri, J. Alkorta, J. Aizpurua, and R. Hillenbrand, Phase-resolved mapping of the near-field vector and polarization state in nanoscale antenna gaps, Nano Lett. 10(9), 3524 (2010)CrossRefADSGoogle Scholar
  19. 19.
    K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, Vector field microscopic imaging of light, Nat. Photonics 1(1), 53 (2007)CrossRefADSGoogle Scholar
  20. 20.
    H. Gersen, L. Novotny, L. Kuipers, and N. F. van Hulst, On the concept of imaging nanoscale vector fields, Nat. Photonics 1(5), 242 (2007)CrossRefADSGoogle Scholar
  21. 21.
    M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th Ed., Cambridge: Cambridge University Press, 1999CrossRefMATHGoogle Scholar
  22. 22.
    T. Setala, A. Shevchenko, M. Kaivola, and A. T. Friberg, Degree of polarization for optical near fields, Phys. Rev. E 66(1), 016615 (2002)CrossRefADSGoogle Scholar
  23. 23.
    S. Patanè, E. Cefali, S. Spadaro, R. Gardelli, M. Albani, and M. Allegrini, Polarization-maintaining near-field optical probes, Journal of Microscopy 229(2), 377 (2008)MathSciNetCrossRefGoogle Scholar
  24. 24.
    M. J. Fasolka, L. S. Goldner, J. Hwang, A. M. Urbas, P. Derege, T. Swager, and E. L. Thomas, Measuring local optical properties: Near-field polarimetry of photonic block copolymer morphology, Phys. Rev. Lett. 90(1), 016107, 1 (2003)CrossRefADSGoogle Scholar
  25. 25.
    P. Anger, P. Bharadwaj, and L. Novotny, Enhancement and quenching of single-molecule fluorescence, Phys. Rev. Lett. 96(11), 113002 (2006)CrossRefADSGoogle Scholar
  26. 26.
    E. Betzig and R. J. Chichester, Single molecules observed by near-field scanning optical microscopy, Science 262(5138), 1422 (1993)CrossRefADSGoogle Scholar
  27. 27.
    H. Eghlidi, K. G. Lee, X. W. Chen, S. Gotzinger, and V. Sandoghdar, Resolution and enhancement in nanoantennabased fluorescence microscopy, Nano Lett. 9(12), 4007 (2009)CrossRefADSGoogle Scholar
  28. 28.
    S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna, Phys. Rev. Lett. 97(1), 017402 (2006)CrossRefADSGoogle Scholar
  29. 29.
    P. Bharadwaj, P. Anger, and L. Novotny, Nanoplasmonic enhancement of single-molecule fluorescence, Nanotechnology 18(4), 044017 (2007)CrossRefADSGoogle Scholar
  30. 30.
    J. N. Farahani, D. W. Pohl, H. J. Eisler, and B. Hecht, Single quantum dot coupled to a scanning optical antenna: A tunable superemitter, Phys. Rev. Lett. 95(1), 017402 (2005)CrossRefADSGoogle Scholar
  31. 31.
    J. M. Gerton, L. A. Wade, G. A. Lessard, Z. Ma, and S. R. Quake, Tip-enhanced fluorescence microscopy at 10 nanometer resolution, Phys. Rev. Lett. 93(18), 180801 (2004)CrossRefADSGoogle Scholar
  32. 32.
    A. Ghimire, E. Shafran, and J. M. Gerton, Using a sharp metal tip to control the polarization and direction of emission from a quantum dot, Sci. Rep. 4, 6456 (2014)CrossRefADSGoogle Scholar
  33. 33.
    T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence, Nano Lett. 7(1), 28 (2007)CrossRefADSGoogle Scholar
  34. 34.
    J. A. Veerman, A. M. Otter, L. Kuipers, and N. F. van Hulst, High definition aperture probes for near-field optical microscopy fabricated by focused ion beam milling, Appl. Phys. Lett. 72(24), 3115 (1998)CrossRefADSGoogle Scholar
  35. 35.
    R. Eckel, V. Walhorn, C. Pelargus, J. Martini, J. Enderlein, T. Nann, D. Anselmetti, and R. Ros, Fluorescenceemission control of single CdSe nanocrystals using goldmodified AFM tips, Small 3(1), 44 (2007)CrossRefGoogle Scholar
  36. 36.
    E. Yoskovitz, D. Oron, I. Shweky, and U. Banin, Apertureless near-field distance-dependent lifetime imaging and spectroscopy of semiconductor nanocrystals, J. Phys. Chem. C 112(42), 16306 (2008)CrossRefGoogle Scholar
  37. 37.
    V. V. Protasenko, M. Kuno, A. Gallagher, and D. J. Nesbitt, Fluorescence of single ZnS overcoated CdSe quantum dots studied by apertureless near-field scanning optical microscopy, Opt. Commun. 210(1–2), 11 (2002)CrossRefADSGoogle Scholar
  38. 38.
    M. I. Stockman, D. J. Bergman, and T. Kobayashi, Coherent control of nanoscale localization of ultrafast optical excitation in nanosystems, Phys. Rev. B 69(5), 054202 (2004)CrossRefADSGoogle Scholar
  39. 39.
    S. Berweger, C. C. Neacsu, Y. B. Mao, H. J. Zhou, S. S. Wong, and M. B. Raschke, Optical nanocrystallography with tip-enhanced phonon Raman spectroscopy, Nat. Nanotechnol. 4(8), 496 (2009)CrossRefADSGoogle Scholar
  40. 40.
    S. Berweger, J. M. Atkin, R. L. Olmon, and M. B. Raschke, Light on the tip of a needle: Plasmonic nanofocusing for spectroscopy on the nanoscale, J. Phys. Chem. Lett. 3(7), 945 (2012)CrossRefGoogle Scholar
  41. 41.
    E. J. Sánchez, L. Novotny, and X. S. Xie, Near-field fluorescence microscopy based on two-photon excitation with metal tips, Phys. Rev. Lett. 82(20), 4014 (1999)CrossRefADSGoogle Scholar
  42. 42.
    T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, Tip-enhanced coherent anti-Stokes Raman scattering for vibrational nanoimaging, Phys. Rev. Lett. 92(22), 220801 (2004)CrossRefADSGoogle Scholar
  43. 43.
    S. Palomba and L. Novotny, Near-field imaging with a localized nonlinear light source, Nano Lett. 9(11), 3801 (2009)CrossRefGoogle Scholar
  44. 44.
    A. V. Zayats and V. Sandoghdar, Apertureless scanning near-field second-harmonic microscopy, Opt. Commun. 178(1–3), 245 (2000)CrossRefADSGoogle Scholar
  45. 45.
    A. V. Zayats and V. Sandoghdar, Apertureless near-field optical microscopy via local second-harmonic generation, Journal of Microscopy 202(1), 94 (2001)MathSciNetCrossRefGoogle Scholar
  46. 46.
    A. V. Zayats and I. I. Smolyaninov, Near-field secondharmonic generation: One contribution of 13 to a Theme “Nano-optics and near-field microscopy”, Royal Society of London Transactions Series A, 362(1817), 843 (2004)CrossRefADSGoogle Scholar
  47. 47.
    C. C. Neacsu, B. B. van Aken, M. Fiebig, and M. B. Raschke, Second-harmonic near-field imaging of ferroelectric domain structure of YMnO3, Phys. Rev. B 79(10), 100107 (2009)CrossRefADSGoogle Scholar
  48. 48.
    C. Neacsu, G. Steudle, and M. Raschke, Plasmonic light scattering from nanoscopic metal tips, Appl. Phys. B 80(3), 295 (2005)CrossRefADSGoogle Scholar
  49. 49.
    K. A. Meyer, K. C. Ng, Z. Gu, Z. Pan, W. B. Whitten, and R. W. Shaw, Combined apertureless near-field optical second-harmonic generation/atomic force microscopy imaging and nanoscale limit of detection, Appl. Spectrosc. 64(1), 1 (2010)CrossRefADSGoogle Scholar
  50. 50.
    S. I. Bozhevolnyi, K. Pedersen, T. Skettrup, X. S. Zhang, and M. Belmonte, Far-and near-field second-harmonic imaging of ferroelectric domain walls, Opt. Commun. 152(4–6), 221 (1998)CrossRefADSGoogle Scholar
  51. 51.
    L. Mahieu-Williame, S. Gresillon, M. Cuniot-Ponsard, and C. Boccara, Second harmonic generation in the near field and far field: A sensitive tool to probe crystalline homogeneity, J. Appl. Phys. 101(8), 083111 (2007)CrossRefADSGoogle Scholar
  52. 52.
    E. Betzig, P. L. Finn, and J. S. Weiner, Combined shear force and near-field scanning optical microscopy, Appl. Phys. Lett. 60(20), 2484 (1992)CrossRefADSGoogle Scholar
  53. 53.
    E. Betzig and J. K. Trautman, Near-field optics: Microscopy, spectroscopy, and surface modification beyond the diffraction limit, Science 257(5067), 189 (1992)CrossRefADSGoogle Scholar
  54. 54.
    T. J. Silva and S. Schultz, A scanning near-field optical microscope for the imaging of magnetic domains in reflection, Rev. Sci. Instrum. 67(3), 715 (1996)CrossRefADSGoogle Scholar
  55. 55.
    F. Matthes, H. Bruckl, and G. Reiss, Near-field magnetooptical microscopy in collection and illumination mode, Ultramicroscopy 71(1–4), 243 (1998)CrossRefGoogle Scholar
  56. 56.
    P. Bertrand, L. Conin, C. Hermann, G. Lampel, J. Peretti, and V. I. Safarov, Imaging of magnetic domains with scanning tunneling optical microscopy, J. Appl. Phys. 83(11), 6834 (1998)CrossRefADSGoogle Scholar
  57. 57.
    C. Durkan, I. V. Shvets, and J. C. Lodder, Observation of magnetic domains using a reflection-mode scanning nearfield optical microscope, Appl. Phys. Lett. 70(10), 1323 (1997)CrossRefADSGoogle Scholar
  58. 58.
    S. Takahashi, W. Dickson, R. Pollard, and A. Zayats, Nearfield magneto-optical analysis in reflection mode SNOM, Ultramicroscopy 100(3–4), 443 (2004)CrossRefGoogle Scholar
  59. 59.
    P. Fumagalli, A. Rosenberger, G. Eggers, A. Munnemann, N. Held, and G. Guntherodt, Quantitative determination of the local Kerr rotation by scanning near-field magneto-optic microscopy, Appl. Phys. Lett. 72(22), 2803 (1998)CrossRefADSGoogle Scholar
  60. 60.
    S. Grésillon, H. Cory, J. C. Rivoal, and A. C. Boccara, Transmission-mode apertureless near-field microscope: Optical and magneto-optical studies, J. Opt. A 1(2), 178 (1999)CrossRefADSGoogle Scholar
  61. 61.
    J. N. Walford, J. A. Porto, R. Carminati, and J. J. Greffet, Theory of near-field magnetooptical imaging, J. Opt. Soc. Am. A 19(3), 572 (2002)CrossRefADSGoogle Scholar
  62. 62.
    P. Fumagalli, Scanning near-field magneto-optic microscopy, in: Modern Techniques for Characterizing Magnetic Materials, edited by Y. Zhu, Dordrecht: Springer, 2005, pp 455–515Google Scholar
  63. 63.
    S. Sugano and N. Kojima (Eds.), Magneto-Optics (Springer Series in Solid-State Sciences), Berlin: Springer, 2000CrossRefGoogle Scholar
  64. 64.
    W. Dickson, S. Takahashi, R. Pollard, R. Atkinson, and A. V. Zayats, Near-field imaging of ultrathin magnetic films with in-plane magnetization, Journal of Microscopy 209(3), 194 (2003)MathSciNetCrossRefGoogle Scholar
  65. 65.
    A. Kapitulnik, J. S. Dodge, and M. M. Fejer, High-resolution magneto-optic measurements with a Sagnac interferometer, J. Appl. Phys. 75(10), 6872 (1994)CrossRefADSGoogle Scholar
  66. 66.
    B. L. Petersen, A. Bauer, G. Meyer, T. Crecelius, and G. Kaindl, Kerr-rotation imaging in scanning near-field optical microscopy using a modified Sagnac interferometer, Appl. Phys. Lett. 73(4), 538 (1998)CrossRefADSGoogle Scholar
  67. 67.
    I. I. Smolyaninov, A. V. Zayats, and C. C. Davis, Near-field second-harmonic imaging of ferromagnetic and ferroelectric materials, Opt. Lett. 22(21), 1592 (1997)CrossRefADSGoogle Scholar
  68. 68.
    D. Wegner, U. Conrad, J. Gudde, G. Meyer, T. Crecelius, and A. Bauer, In-plane magnetization of garnet films imaged by proximal probe nonlinear magneto-optical microscopy, J. Appl. Phys. 88(4), 2166 (2000)CrossRefADSGoogle Scholar
  69. 69.
    W. Dickson, S. Takahashi, C. M. I. Boronat, R. M. Bowman, J. M. Gregg, and A. V. Zayats, Near-field secondharmonic imaging of thin ferroelectric films, Phys. Rev. B 72(9), 094110 (2005)CrossRefADSGoogle Scholar
  70. 70.
    J. Stadler, T. Schmid, and R. Zenobi, Developments in and practical guidelines for tip-enhanced Raman spectroscopy, Nanoscale 4(6), 1856 (2012)CrossRefADSGoogle Scholar
  71. 71.
    T. Mino, Y. Saito, and P. Verma, Quantitative analysis of polarization-controlled tip-enhanced Raman imaging through the evaluation of the tip dipole, ACS Nano 8(10), 10187 (2014)CrossRefGoogle Scholar
  72. 72.
    Y. Saito and P. Verma, Polarization-controlled Raman microscopy and nanoscopy, J. Phys. Chem. Lett. 3(10), 1295 (2012)CrossRefGoogle Scholar
  73. 73.
    M. D. Sonntag, E. A. Pozzi, N. Jiang, M. C. Hersam, and R. P. Van Duyne, Recent advances in tip-enhanced Raman spectroscopy, J. Phys. Chem. Lett. 5(18), 3125 (2014)CrossRefGoogle Scholar
  74. 74.
    P. Verma, T. Ichimura, T. Yano, Y. Saito, and S. Kawata, Nano-imaging through tip-enhanced Raman spectroscopy: Stepping beyond the classical limits, Laser Photonics Rev. 4(4), 548 (2010)CrossRefGoogle Scholar
  75. 75.
    T. Mino, Y. Saito, H. Yoshida, S. Kawata, and P. Verma, Molecular orientation analysis of organic thin films by z-polarization Raman microscope, J. Raman Spectrosc. 43(12), 2029 (2012)CrossRefADSGoogle Scholar
  76. 76.
    H. A. Bethe, Theory of diffraction by small holes, Phys. Rev. 66(7–8), 163 (1944)MathSciNetCrossRefADSMATHGoogle Scholar
  77. 77.
    L. Novotny and C. Hafner, Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function, Phys. Rev. E 50(5), 4094 (1994)CrossRefADSGoogle Scholar
  78. 78.
    R. D. Grober, T. Rutherford, and T. D. Harris, Modal approximation for the electromagnetic field of a near-field optical probe, Appl. Opt. 35(19), 3488 (1996)CrossRefADSGoogle Scholar
  79. 79.
    Th. Huser, L. Novotny, Th. Lacoste, R. Eckert, and H. Heinzelmann, Observation and analysis of near-field optical diffraction, J. Opt. Soc. Am. A 16(1), 141 (1999)CrossRefADSGoogle Scholar
  80. 80.
    T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, A single gold particle as a probe for apertureless scanning near-field optical microscopy, Journal of Microscopy-Oxford 202(1), 72 (2001)MathSciNetCrossRefGoogle Scholar
  81. 81.
    M. I. Stockman, Nanofocusing of optical energy in tapered plasmonic waveguides, Phys. Rev. Lett. 93(13), 137404 (2004)CrossRefADSGoogle Scholar
  82. 82.
    F. Huth, M. Schnell, J. Wittborn, N. Ocelic, and R. Hillenbrand, Infrared-spectroscopic nanoimaging with a thermal source, Nat. Mater. 10(5), 352 (2011)CrossRefADSGoogle Scholar
  83. 83.
    J. Stadler, T. Schmid, and R. Zenobi, Nanoscale chemical imaging using top-illumination tip-enhanced Raman spectroscopy, Nano Lett. 10(11), 4514 (2010)CrossRefADSGoogle Scholar
  84. 84.
    A. Weber-Bargioni, A. Schwartzberg, M. Cornaglia, A. Ismach, J. J. Urban, Y. Pang, R. Gordon, J. Bokor, M. B. Salmeron, D. F. Ogletree, P. Ashby, S. Cabrini, and P. J. Schuck, Hyperspectral nanoscale imaging on dielectric substrates with coaxial optical antenna scan probes, Nano Lett. 11(3), 1201 (2011)CrossRefADSGoogle Scholar
  85. 85.
    P. G. Gucciardi, M. Lopes, R. Déturche, C. Julien, D. Barchiesi, and M. L. de la Chapelle, Light depolarization induced by metallic tips in apertureless near-field optical microscopy and tip-enhanced Raman spectroscopy, Nanotechnology 19(21), 215702 (2008)CrossRefADSGoogle Scholar
  86. 86.
    R. Ossikovski, Q. Nguyen, and G. Picardi, Simple model for the polarization effects in tip-enhanced Raman spectroscopy, Phys. Rev. B 75(4), 045412 (2007)CrossRefADSGoogle Scholar
  87. 87.
    T. Schmid, L. Opilik, C. Blum, and R. Zenobi, Nanoscale chemical imaging using tip-enhanced Raman spectroscopy: A critical review, Angew. Chem. Int. Ed. 52(23), 5940 (2013)CrossRefGoogle Scholar
  88. 88.
    T. Schmid, B. S. Yeo, G. Leong, J. Stadler, and R. Zenobi, Performing tip-enhanced Raman spectroscopy in liquids, J. Raman Spectrosc. 40(10), 1392 (2009)CrossRefADSGoogle Scholar
  89. 89.
    A. Tarun, N. Hayazawa, and S. Kawata, Tip-enhanced Raman spectroscopy for nanoscale strain characterization, Anal. Bioanal. Chem. 394(7), 1775 (2009)CrossRefGoogle Scholar
  90. 90.
    Y. Ogawa, T. Toizumi, F. Minami, and A. V. Baranov, Nanometer-scale mapping of the strain and Ge content of Ge/Si quantum dots using enhanced Raman scattering by the tip of an atomic force microscope, Phys. Rev. B 83(8), 081302 (2011)CrossRefADSGoogle Scholar
  91. 91.
    S. Nakashima, T. Mitani, M. Ninomiya, and K. Matsumoto, Raman investigation of strain in Si/SiGe heterostructures: Precise determination of the strain-shift coefficient of Si bands, J. Appl. Phys. 99(5), 053512 (2006)CrossRefADSGoogle Scholar
  92. 92.
    R. M. Stöckle, Y. D. Suh, V. Deckert, and R. Zenobi, Nanoscale chemical analysis by tip-enhanced Raman spectroscopy, Chem. Phys. Lett. 318(1–3), 131 (2000)CrossRefADSGoogle Scholar
  93. 93.
    Y. D. Suh, R. M. Soeckle, V. Deckert, and R. Zenobi, Abstracts of Papers of the American Chemical Society 221, U91 (2001)Google Scholar
  94. 94.
    E. Poliani, M. R. Wagner, J. S. Reparaz, M. Mandl, M. Strassburg, X. Kong, A. Trampert, C. M. Sotomayor Torres, A. Hoffmann, and J. Maultzsch, Nanoscale imaging of InN segregation and polymorphism in single vertically aligned InGaN/GaN multi quantum well nanorods by tip-enhanced Raman scattering, Nano Lett. 13(7), 3205 (2013)CrossRefADSGoogle Scholar
  95. 95.
    S. Berweger, J. M. Atkin, R. L. Olmon, and M. B. Raschke, Adiabatic tip-plasmon focusing for nano-Raman spectroscopy, J. Phys. Chem. Lett. 1(24), 3427 (2010)CrossRefGoogle Scholar
  96. 96.
    N. Hayazawa, M. Motohashi, Y. Saito, H. Ishitobi, A. Ono, T. Ichimura, P. Verma, and S. Kawata, Visualization of localized strain of a crystalline thin layer at the nanoscale by tip-enhanced Raman spectroscopy and microscopy, J. Raman Spectrosc. 38(6), 684 (2007)CrossRefADSGoogle Scholar
  97. 97.
    C. Chen, N. Hayazawa, and S. Kawata, A 1.7 nm resolution chemical analysis of carbon nanotubes by tip-enhanced Raman imaging in the ambient, Nat. Commun. 5, 3312 (2014)ADSGoogle Scholar
  98. 98.
    T. Yano, P. Verma, Y. Saito, T. Ichimura, and S. Kawata, Pressure-assisted tip-enhanced Raman imaging at a resolution of a few nanometres, Nat. Photonics 3(8), 473 (2009)CrossRefADSGoogle Scholar
  99. 99.
    R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, Chemical mapping of a single molecule by plasmon-enhanced Raman scattering, Nature 498(7452), 82 (2013)CrossRefADSGoogle Scholar
  100. 100.
    T. X. Huang, S. C. Huang, M. H. Li, Z. C. Zeng, X. Wang, and B. Ren, Tip-enhanced Raman spectroscopy: Tip-related issues, Anal. Bioanal. Chem. 407(27), 8177 (2015)CrossRefGoogle Scholar
  101. 101.
    X. Zheng, C. Zong, M. Xu, X. Wang, and B. Ren, Raman imaging from microscopy to nanoscopy, and to macroscopy, Small 11(28), 3395 (2015)CrossRefGoogle Scholar
  102. 102.
    R. Beams, L. G. Cancado, S. H. Oh, A. Jorio, and L. Novotny, Spatial coherence in near-field Raman scattering, Phys. Rev. Lett. 113(18), 186101 (2014)CrossRefGoogle Scholar
  103. 103.
    F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons, Nat. Nanotechnol. 5(1), 67 (2010)CrossRefADSGoogle Scholar
  104. 104.
    A. Hartschuh, E. J. Sanchez, X. S. Xie, and L. Novotny, High-resolution near-field Raman microscopy of singlewalled carbon nanotubes, Phys. Rev. Lett. 90(9), 095503 (2003)CrossRefADSGoogle Scholar
  105. 105.
    M. Brehm, T. Taubner, R. Hillenbrand, and F. Keilmann, Infrared spectroscopic mapping of single nanoparticles and viruses at nanoscale resolution, Nano Lett. 6(7), 1307 (2006)CrossRefADSGoogle Scholar
  106. 106.
    F. Huth, A. Govyadinov, S. Amarie, W. Nuansing, F. Keilmann, and R. Hillenbrand, Nano-FTIR absorption spectroscopy of molecular fingerprints at 20 nm spatial resolution, Nano Lett. 12(8), 3973 (2012)CrossRefADSGoogle Scholar
  107. 107.
    A. C. Jones and M. B. Raschke, Thermal infrared near-field spectroscopy, Nano Lett. 12(3), 1475 (2012)CrossRefADSGoogle Scholar
  108. 108.
    I. Amenabar, S. Poly, W. Nuansing, E. H. Hubrich, A. A. Govyadinov, F. Huth, R. Krutokhvostov, L. Zhang, M. Knez, J. Heberle, A. M. Bittner, and R. Hillenbrand, Structural analysis and mapping of individual protein complexes by infrared nanospectroscopy, Nat. Commun. 4, 2890 (2013)CrossRefADSGoogle Scholar
  109. 109.
    H. A. Bechtel, E. A. Muller, R. L. Olmon, M. C. Martin, and M. B. Raschke, Ultrabroadband infrared nanospectroscopic imaging, Proc. Natl. Acad. Sci. USA 111(20), 7191 (2014)CrossRefADSGoogle Scholar
  110. 110.
    S. Mastel, A. A. Govyadinov, T. V. A. G. de Oliveira, I. Amenabar, and R. Hillenbrand, Nanoscale-resolved chemical identification of thin organic films using infrared nearfield spectroscopy and standard Fourier transform infrared references, Appl. Phys. Lett. 106(2), 023113 (2015)CrossRefADSGoogle Scholar
  111. 111.
    B. Pollard, E. A.Muller, K. Hinrichs, and M. B. Raschke, Vibrational nano-spectroscopic imaging correlating structure with intermolecular coupling and dynamics, Nat. Commun. 5, 3587 (2014)CrossRefADSGoogle Scholar
  112. 112.
    C. Höppener and L. Novotny, Exploiting the light–metal interaction for biomolecular sensing and imaging, Q. Rev. Biophys. 45(02), 209 (2012)CrossRefGoogle Scholar
  113. 113.
    B. D. Mangum, C. Mu, and J. M. Gerton, Resolving single fluorophores within dense ensembles: Contrast limits of tipenhanced fluorescence microscopy, Opt. Express 16(9), 6183 (2008)CrossRefADSGoogle Scholar
  114. 114.
    B. D. Mangum, E. Shafran, C. Mu, and J. M. Gerton, Threedimensional mapping of near-field interactions via singlephoton tomography, Nano Lett. 9(10), 3440 (2009)CrossRefADSGoogle Scholar
  115. 115.
    L. Neumann, Y. J. Pang, A. Houyou, M. L. Juan, R. Gordon, and N. F. van Hulst, Extraordinary optical transmission brightens near-field fiber probe, Nano Lett. 11(2), 355 (2011)CrossRefADSGoogle Scholar
  116. 116.
    M. A. Bopp, A. J. Meixner, G. Tarrach, I. Zschokke-Gränacher, and L. Novotny, Direct imaging single molecule diffusion in a solid polymer host, Chem. Phys. Lett. 263(6), 721 (1996)CrossRefADSGoogle Scholar
  117. 117.
    T. W. Johnson, Z. J. Lapin, R. Beams, N. C. Lindquist, S. G. Rodrigo, L. Novotny, and S. H. Oh, Highly reproducible near-field optical imaging with sub-20-nm resolution based on template-stripped gold pyramids, ACS Nano 6(10), 9168 (2012)CrossRefGoogle Scholar
  118. 118.
    C. C. Neacsu, G. A. Reider, and M. B. Raschke, Secondharmonic generation from nanoscopic metal tips: Symmetry selection rules for single asymmetric nanostructures, Phys. Rev. B 71(20), 201402 (2005)CrossRefADSGoogle Scholar
  119. 119.
    A. L. Demming, F. Festy, and D. Richards, Plasmon resonances on metal tips: Understanding tip-enhanced Raman scattering, J. Chem. Phys. 122(18), 184716 (2005)CrossRefADSGoogle Scholar
  120. 120.
    D. Mehtani, N. Lee, R. D. Hartschuh, A. Kisliuk, M. D. Foster, A. P. Sokolov, and J. F. Maguire, Nano-Raman spectroscopy with side-illumination optics, J. Raman Spectrosc. 36(11), 1068 (2005)CrossRefADSGoogle Scholar
  121. 121.
    J. A. Veerman, M. F. Garcia-Parajo, L. Kuipers, and N. F. Van Hulst, Single molecule mapping of the optical field distribution of probes for near-field microscopy, Journal of Microscopy 194(2–3), 477 (1999)CrossRefGoogle Scholar
  122. 122.
    B. Sick, B. Hecht, U. P. Wild, and L. Novotny, Probing confined fields with single molecules and vice versa, Journal of Microscopy 202(2), 365 (2001)MathSciNetCrossRefGoogle Scholar
  123. 123.
    K. G. Lee, H. W. Kihm, K. J. Ahn, J. S. Ahn, Y. D. Suh, C. Lienau, and D. S. Kim, Vector field mapping of local polarization using gold nanoparticle functionalized tips: Independence of the tip shape, Opt. Express 15(23), 14993 (2007)CrossRefADSGoogle Scholar
  124. 124.
    C. Huang, A. Bouhelier, G. Colas des Francs, A. Bruyant, A. Guenot, E. Finot, J. C. Weeber, and A. Dereux, Gain, detuning, and radiation patterns of nanoparticle optical antennas, Phys. Rev. B 78(15), 155407 (2008)CrossRefADSGoogle Scholar
  125. 125.
    M. A. Lieb, J. M. Zavislan, and L. Novotny, Single-molecule orientations determined by direct emission pattern imaging, J. Opt. Soc. Am. B 21(6), 1210 (2004)CrossRefADSGoogle Scholar
  126. 126.
    T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. Van Hulst, Optical antennas direct single-molecule emission, Nat. Photonics 2(4), 234 (2008)CrossRefGoogle Scholar
  127. 127.
    S. Kuhn, G. Mori, M. Agio, and V. Sandoghdar, Modification of single molecule fluorescence close to a nanostructure: Radiation pattern, spontaneous emission and quenching, Mol. Phys. 106(7), 893 (2008)CrossRefADSGoogle Scholar
  128. 128.
    M. Böhmler, N. Hartmann, C. Georgi, F. Hennrich, A. A. Green, M. C. Hersam, and A. Hartschuh, Enhancing and redirecting carbon nanotube photoluminescence by an optical antenna, Opt. Express 18(16), 16443 (2010)CrossRefADSGoogle Scholar
  129. 129.
    T. H. Taminiau, S. Karaveli, N. F. van Hulst, and R. Zia, Quantifying the magnetic nature of light emission, Nat. Commun. 3, 979 (2012)CrossRefADSGoogle Scholar
  130. 130.
    A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, Unidirectional emission of a quantum dot coupled to a nanoantenna, Science 329(5994), 930 (2010)CrossRefADSGoogle Scholar
  131. 131.
    M. Terrones, Science and technology of the twenty-first century: Synthesis, properties, and applications of carbon nanotubes, Annu. Rev. Mater. Res. 33(1), 419 (2003)CrossRefADSGoogle Scholar
  132. 132.
    M. S. Dresselhaus, A. Jorio, and R. Saito, Characterizing graphene, graphite, and carbon nanotubes by Raman spectroscopy, Ann. Rev. Condens. Matter Phys. 1, 89 (2010)CrossRefADSGoogle Scholar
  133. 133.
    X. Zhang, W. Zhang, L. Liu, and Z. X. Shen, Surfaceenhanced Raman of Z-vibration mode in single-walled and multi-walled carbon nanotube, Chem. Phys. Lett. 372(3–4), 497 (2003)CrossRefADSGoogle Scholar
  134. 134.
    M. S. Dresselhaus, G. Dresselhaus, R. Saito, and A. Jorio, Raman spectroscopy of carbon nanotubes, Phys. Rep. 409(2), 47 (2005)CrossRefADSGoogle Scholar
  135. 135.
    M. S. Dresselhaus, G. Dresselhaus, and A. Jorio, Raman spectroscopy of carbon nanotubes in 1997 and 2007, J. Phys. Chem. C 111(48), 17887 (2007)CrossRefGoogle Scholar
  136. 136.
    C. Fantini, A. Jorio, M. Souza, M. S. Strano, M. S. Dresselhaus, and M. A. Pimenta, Optical transition energies for carbon nanotubes from resonant Raman spectroscopy: Environment and temperature effects, Phys. Rev. Lett. 93(14), 147406 (2004)CrossRefADSGoogle Scholar
  137. 137.
    C. Fantini, A. Jorio, M. Souza, R. Saito, G. G. Samsonidze, M. S. Dresselhaus, and M. A. Pimenta, Steplike dispersion of the intermediate-frequency Raman modes in semiconducting and metallic carbon nanotubes, Phys. Rev. B 72(8), 085446 (2005)CrossRefADSGoogle Scholar
  138. 138.
    R. Saito, T. Takeya, T. Kimura, G. Dresselhaus, and M. S. Dresselhaus, Finite-size effect on the Raman spectra of carbon nanotubes, Phys. Rev. B 59(3), 2388 (1999)CrossRefADSGoogle Scholar
  139. 139.
    K. Sbai, A. Rahmani, H. Chadli, and J. L. Sauvajol, Finitesize effect on the Raman-active modes of double-walled carbon nanotubes, J. Phys.: Condens. Matter 20(1), 015204 (2008)ADSGoogle Scholar
  140. 140.
    M. Mitra, and S. Gopalakrishnan, Vibrational characteristics of single-walled carbon-nanotube: Time and frequency domain analysis, J. Appl. Phys. 101(11), 114320 (2007)CrossRefADSGoogle Scholar
  141. 141.
    G. Picardi, M. Chaigneau, and R. Ossikovski, High resolution probing of multi wall carbon nanotubes by Tip Enhanced Raman Spectroscopy in gap-mode, Chem. Phys. Lett. 469(1–3), 161 (2009)CrossRefADSGoogle Scholar
  142. 142.
    I. O. Maciel, N. Anderson, M. A. Pimenta, A. Hartschuh, H. H. Qian, M. Terrones, H. Terrones, J. Campos-Delgado, A. M. Rao, L. Novotny, and A. Jorio, Electron and phonon renormalization near charged defects in carbon nanotubes, Nat. Mater. 7(11), 878 (2008)CrossRefADSGoogle Scholar
  143. 143.
    N. Anderson, A. Hartschuh, and L. Novotny, Chirality changes in carbon nanotubes studied with near-field raman spectroscopy, Nano Lett. 7(3), 577 (2007)CrossRefADSGoogle Scholar
  144. 144.
    Y. Saito, P. Verma, K. Masui, Y. Inouye, and S. Kawata, Nano-scale analysis of graphene layers by tip-enhanced nearfield Raman spectroscopy, J. Raman Spectrosc. 40(10), 1434 (2009)CrossRefADSGoogle Scholar
  145. 145.
    R. H. Rickman and P. R. Dunstan, Enhancement of lattice defect signatures in graphene and ultrathin graphite using tip-enhanced Raman spectroscopy, J. Raman Spectrosc. 45(1), 15 (2014)CrossRefADSGoogle Scholar
  146. 146.
    R. Beams, L. G. Cancado, A. Jorio, A. N. Vamivakas, and L. Novotny, Tip-enhanced Raman mapping of local strain in graphene, Nanotechnology 26(17), 175702 (2015)CrossRefADSGoogle Scholar
  147. 147.
    A. Shiotari, T. Kumagai, and M. Wolf, Tip-enhanced Raman spectroscopy of graphene nanoribbons on Au(111), J. Phys. Chem. C 118(22), 11806 (2014)CrossRefGoogle Scholar
  148. 148.
    Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. C. Neto, C. N. Lau, F. Keilmann, and D. N. Basov, Gate-tuning of graphene plasmons revealed by infrared nano-imaging, Nature 487(7405), 82 (2012)ADSGoogle Scholar
  149. 149.
    J. N. Chen, M. Badioli, P. Alonso-Gonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovic, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. G. de Abajo, R. Hillenbrand, and F. H. L. Koppens, Optical nano-imaging of gate-tunable graphene plasmons, Nature 487(7405), 77 (2012)ADSGoogle Scholar
  150. 150.
    P. Alonso-Gonzalez, A. Y. Nikitin, F. Golmar, A. Centeno, A. Pesquera, S. Velez, J. Chen, G. Navickaite, F. Koppens, A. Zurutuza, F. Casanova, L. E. Hueso, and R. Hillenbrand, Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns, Science 344(6190), 1369 (2014)CrossRefADSGoogle Scholar
  151. 151.
    A. Woessner, M. B. Lundeberg, Y. Gao, A. Principi, P. Alonso-González, M. Carrega, K. Watanabe, T. Taniguchi, G. Vignale, M. Polini, J. Hone, R. Hillenbrand, and F. H. L. Koppens, Highly confined low-loss plasmons in graphene–boron nitride heterostructures, Nat. Mater. 14(4), 421 (2015)CrossRefADSGoogle Scholar
  152. 152.
    Z. Shi, X. Hong, H. A. Bechtel, B. Zeng, M. C. Martin, K. Watanabe, T. Taniguchi, Y. R. Shen, and F. Wang, Observation of a Luttinger-liquid plasmon in metallic single-walled carbon nanotubes, Nat. Photonics 9(8), 515 (2015)CrossRefADSGoogle Scholar
  153. 153.
    M. Wagner, Z. Fei, A. S. McLeod, A. S. Rodin, W. Bao, E. G. Iwinski, Z. Zhao, M. Goldflam, M. Liu, G. Dominguez, M. Thiemens, M. M. Fogler, A. H. Castro Neto, C. N. Lau, S. Amarie, F. Keilmann, and D. N. Basov, Ultrafast and nanoscale plasmonic phenomena in exfoliated graphene revealed by infrared pump–probe nanoscopy, Nano Lett. 14(2), 894 (2014)CrossRefADSGoogle Scholar
  154. 154.
    D. N. Basov, M. M. Fogler, A. Lanzara, F. Wang, and Y. Zhang, Colloquium: Graphene spectroscopy, Rev. Mod. Phys. 86(3), 959 (2014)CrossRefADSGoogle Scholar
  155. 155.
    N. C. Lindquist, P. Nagpal, K. M. McPeak, D. J. Norris, and S. H. Oh, Engineering metallic nanostructures for plasmonics and nanophotonics, Rep. Prog. Phys. 75(3), 036501 (2012)CrossRefADSGoogle Scholar
  156. 156.
    M. Fleischer, A. Weber-Bargioni, M. V. P. Altoe, A. M. Schwartzberg, P. J. Schuck, S. Cabrini, and D. P. Kern, Gold nanocone near-field scanning optical microscopy probes, ACS Nano 5(4), 2570 (2011)CrossRefGoogle Scholar
  157. 157.
    P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, Resonant optical antennas, Science 308(5728), 1607 (2005)CrossRefADSGoogle Scholar
  158. 158.
    P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, Improving the mismatch between light and nanoscale objects with gold Bowtie nanoantennas, Phys. Rev. Lett. 94(1), 017402 (2005)CrossRefADSGoogle Scholar
  159. 159.
    D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, Gap-dependent optical coupling of single “Bowtie” nanoantennas resonant in the visible, Nano Lett. 4(5), 957 (2004)CrossRefADSGoogle Scholar
  160. 160.
    P. Biagioni, J. S. Huang, and B. Hecht, Nanoantennas for visible and infrared radiation, Rep. Prog. Phys. 75(2), 024402 (2012)CrossRefADSGoogle Scholar
  161. 161.
    J. N. Farahani, H. J. Eisler, D. W. Pohl, M. Pavius, P. Fluckiger, P. Gasser, and B. Hecht, Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy, Nanotechnology 18(12), 125506 (2007)CrossRefADSGoogle Scholar
  162. 162.
    A. Weber-Bargioni, A. Schwartzberg, M. Schmidt, B. Harteneck, D. F. Ogletree, P. J. Schuck, and S. Cabrini, Functional plasmonic antenna scanning probes fabricated by induceddeposition mask lithography, Nanotechnology 21(6), 065306 (2010)CrossRefADSGoogle Scholar
  163. 163.
    M. Melli, A. Polyakov, D. Gargas, C. Huynh, L. Scipioni, W. Bao, D. F. Ogletree, P. J. Schuck, S. Cabrini, and A. Weber-Bargioni, Reaching the theoretical resonance quality factor limit in coaxial plasmonic nanoresonators fabricated by helium ion lithography, Nano Lett. 13(6), 2687 (2013)CrossRefADSGoogle Scholar
  164. 164.
    B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Single-layer MoS2 transistors, Nat. Nanotechnol. 6(3), 147 (2011)CrossRefADSGoogle Scholar
  165. 165.
    Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Electronics and optoelectronics of twodimensional transition metal dichalcogenides, Nat. Nanotechnol. 7(11), 699 (2012)CrossRefADSGoogle Scholar
  166. 166.
    Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, and H. Zhang, Single-layer MoS2 phototransistors, ACS Nano 6(1), 74 (2012)CrossRefGoogle Scholar
  167. 167.
    J. S. Ross, P. Klement, A. M. Jones, N. J. Ghimire, J. Yan, D. G. Mandrus, T. Taniguchi, K. Watanabe, K. Kitamura, W. Yao, D. H. Cobden, and X. Xu, Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p–n junctions, Nat. Nanotechnol. 9(4), 268 (2014)CrossRefADSGoogle Scholar
  168. 168.
    W. Wu, L. Wang, Y. Li, F. Zhang, L. Lin, S. Niu, D. Chenet, X. Zhang, Y. Hao, T. F. Heinz, J. Hone, and Z. L. Wang, Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics, Nature 514(7523), 470 (2014)CrossRefADSGoogle Scholar
  169. 169.
    B. W. H. Baugher, H. O. H. Churchill, Y. Yang, and P. Jarillo-Herrero, Optoelectronic devices based on electrically tunable p–n diodes in a monolayer dichalcogenide, Nat. Nanotechnol. 9(4), 262 (2014)CrossRefADSGoogle Scholar
  170. 170.
    F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, Photodetectors based on graphene, other two-dimensional materials and hybrid systems, Nat. Nanotechnol. 9(10), 780 (2014)CrossRefADSGoogle Scholar
  171. 171.
    G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S. K. Banerjee, and L. Colombo, Electronics based on two-dimensional materials, Nat. Nanotechnol. 9(10), 768 (2014)CrossRefADSGoogle Scholar
  172. 172.
    F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, Two-dimensional material nanophotonics, Nat. Photonics 8(12), 899 (2014)CrossRefADSGoogle Scholar
  173. 173.
    K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene, Nature 438(7065), 197 (2005)CrossRefADSGoogle Scholar
  174. 174.
    Y. B. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Experimental observation of the quantum Hall effect and Berry’s phase in graphene, Nature 438(7065), 201 (2005)CrossRefADSGoogle Scholar
  175. 175.
    K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Atomically thin MoS2: A new direct-gap semiconductor, Phys. Rev. Lett. 105(13), 136805 (2010)CrossRefADSGoogle Scholar
  176. 176.
    A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, Emerging photoluminescence in monolayer MoS2, Nano Lett. 10(4), 1271 (2010)CrossRefADSGoogle Scholar
  177. 177.
    A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. Li, O. B. Aslan, D. R. Reichman, M. S. Hybertsen, and T. F. Heinz, Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2, Phys. Rev. Lett. 113(7), 076802 (2014)CrossRefADSGoogle Scholar
  178. 178.
    Z. Ye, T. Cao, K. O’Brien, H. Zhu, X. Yin, Y. Wang, S. G. Louie, and X. Zhang, Probing excitonic dark states in singlelayer tungsten disulphide, Nature 513(7517), 214 (2014)CrossRefADSGoogle Scholar
  179. 179.
    X. Xu, W. Yao, D. Xiao, and T. F. Heinz, Spin and pseudospins in layered transition metal dichalcogenides, Nat. Phys. 10(5), 343 (2014)CrossRefGoogle Scholar
  180. 180.
    A. K. Geim and I. V. Grigorieva, Van der Waals heterostructures, Nature 499(7459), 419 (2013)CrossRefGoogle Scholar
  181. 181.
    S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutierrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, Progress, challenges, and opportunities in two-dimensional materials beyond graphene, ACS Nano 7(4), 2898 (2013)CrossRefGoogle Scholar
  182. 182.
    K. F. Mak, K. He, C. Lee, G. H. Lee, J. Hone, T. F. Heinz, and J. Shan, Tightly bound trions in monolayer MoS2, Nat. Mater. 12(3), 207 (2013)CrossRefADSGoogle Scholar
  183. 183.
    C. Zhang, A. Johnson, C. L. Hsu, L. J. Li, and C. K. Shih, Direct imaging of band profile in single layer MoS2 on graphite: Quasiparticle energy gap, metallic edge states, and edge band bending, Nano Lett. 14(5), 2443 (2014)CrossRefADSGoogle Scholar
  184. 184.
    M. M. Ugeda, A. J. Bradley, S. F. Shi, F. H. da Jornada, Y. Zhang, D. Y. Qiu, W. Ruan, S. K. Mo, Z. Hussain, Z. X. Shen, F. Wang, S. G. Louie, and M. F. Crommie, Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor, Nat. Mater. 13(12), 1091 (2014)CrossRefADSGoogle Scholar
  185. 185.
    W. Zhu, T. Low, Y. H. Lee, H. Wang, D. B. Farmer, J. Kong, F. Xia, and P. Avouris, Electronic transport and device prospects of monolayer molybdenum disulphide grown by chemical vapour deposition, Nat. Commun. 5, 3087 (2014)ADSGoogle Scholar
  186. 186.
    J. A. Schuller, S. Karaveli, T. Schiros, K. He, S. Yang, I. Kymissis, J. Shan, and R. Zia, Orientation of luminescent excitons in layered nanomaterials, Nat. Nanotechnol. 8(4), 271 (2013)CrossRefADSGoogle Scholar
  187. 187.
    D. F. Ogletree, P. J. Schuck, A. F. Weber-Bargioni, N. J. Borys, S. Aloni, W. Bao, S. Barja, J. Lee, M. Melli, K. Munechika, S. Whitelam, and S. Wickenburg, Revealing optical properties of reduced-dimensionality materials at relevant length scales, Adv. Mater. 27(38), 5693 (2015)CrossRefGoogle Scholar
  188. 188.
    Y. Abate, S. Gamage, L. Zhen, S. B. Cronin, H. Wang, V. Babicheva, M. H. Javani, and M. I. Stockman, Nanoscopy reveals metallic black phosphorus, arXiv: 1506.05431Google Scholar
  189. 189.
    Y. Lee, S. Park, H. Kim, G. H. Han, Y. H. Lee, and J. Kim, Characterization of the structural defects in CVD-grown monolayered MoS2 using near-field photoluminescence imaging, Nanoscale 7(28), 11909 (2015)CrossRefADSGoogle Scholar
  190. 190.
    Y. Kang, S. Najmaei, Z. Liu, Y. Bao, Y. Wang, X. Zhu, N. J. Halas, P. Nordlander, P. M. Ajayan, J. Lou, and Z. Fang, Plasmonic hot electron induced structural phase transition in a MoS2 monolayer, Adv. Mater. 26(37), 6467 (2014)CrossRefGoogle Scholar
  191. 191.
    W. Bao, M. Melli, N. Caselli, F. Riboli, D. S. Wiersma, M. Staffaroni, H. Choo, D. F. Ogletree, S. Aloni, J. Bokor, S. Cabrini, F. Intonti, M. B. Salmeron, E. Yablonovitch, P. J. Schuck, and A. Weber-Bargioni, Mapping local charge recombination heterogeneity by multidimensional nanospectroscopic imaging, Science 338(6112), 1317 (2012)CrossRefADSGoogle Scholar
  192. 192.
    W. Bao, M. Staffaroni, J. Bokor, M. B. Salmeron, E. Yablonovitch, S. Cabrini, A. Weber-Bargioni, and P. J. Schuck, Plasmonic near-field probes: A comparison of the campanile geometry with other sharp tips, Opt. Express 21(7), 8166 (2013)CrossRefADSGoogle Scholar
  193. 193.
    W. Bao, N. J. Borys, C. Ko, J. Suh, W. Fan, A. Thron, Y. Zhang, A. Buyanin, J. Zhang, S. Cabrini, P. D. Ashby, A. Weber-Bargioni, S. Tongay, S. Aloni, D. F. Ogletree, J. Wu, M. B. Salmeron, and P. J. Schuck, Visualizing nanoscale excitonic relaxation properties of disordered edges and grain boundaries in monolayer molybdenum disulfide, Nat. Commun. 6, 7993 (2015)CrossRefADSGoogle Scholar
  194. 194.
    X. Cui, G. H. Lee, Y. D. Kim, G. Arefe, P. Y. Huang, C. H. Lee, D. A. Chenet, X. Zhang, L. Wang, F. Ye, F. Pizzocchero, B. S. Jessen, K. Watanabe, T. Taniguchi, D. A. Muller, T. Low, P. Kim, and J. Hone, Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform, Nat. Nanotechnol. 10(6), 534 (2015)CrossRefADSGoogle Scholar
  195. 195.
    E. Devaux, A. Dereux, E. Bourillot, J. C. Weeber, Y. Lacroute, J. P. Goudonnet, and C. Girard, Local detection of the optical magnetic field in the near zone of dielectric samples, Phys. Rev. B 62(15), 10504 (2000)CrossRefADSGoogle Scholar
  196. 196.
    Z. H. Kim and S. R. Leone, Polarization-selective mapping of near-field intensity and phase around gold nanoparticles using apertureless near-field microscopy, Opt. Express 16(3), 1733 (2008)CrossRefADSGoogle Scholar
  197. 197.
    D. S. Kim, J. Heo, S. H. Ahn, S. W. Han, W. S. Yun, and Z. H. Kim, Real-space mapping of the strongly coupled plasmons of nanoparticle dimers, Nano Lett. 9(10), 3619 (2009)CrossRefADSGoogle Scholar
  198. 198.
    M. Schnell, A. Garcia-Etxarri, A. J. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, Controlling the near-field oscillations of loaded plasmonic nanoantennas, Nat. Photonics 3(5), 287 (2009)CrossRefADSGoogle Scholar
  199. 199.
    M. Schnell, P. Alonso-Gonzalez, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, Nanofocusing of mid-infrared energy with tapered transmission lines, Nat. Photonics 5(5), 283 (2011)CrossRefADSGoogle Scholar
  200. 200.
    R. L. Olmon, M. Rang, P. M. Krenz, B. A. Lail, L. V. Saraf, G. D. Boreman, and M. B. Raschke, Determination of electric-field, magnetic-field, and electric-current distributions of infrared optical antennas: A near-field optical vector network analyzer, Phys. Rev. Lett. 105(16), 167403 (2010)CrossRefADSGoogle Scholar
  201. 201.
    R. L. Olmon, P. M. Krenz, A. C. Jones, G. D. Boreman, and M. B. Raschke, Near-field imaging of optical antenna modes in the mid-infrared, Opt. Express 16(25), 20295 (2008)CrossRefADSGoogle Scholar
  202. 202.
    N. Yu, E. Cubukcu, L. Diehl, M. A. Belkin, K. B. Crozier, F. Capasso, D. Bour, S. Corzine, and G. Hofler, Plasmonic quantum cascade laser antenna, Appl. Phys. Lett. 91(17), 173113 (2007)CrossRefADSGoogle Scholar
  203. 203.
    L. Novotny and C. Henkel, Van der Waals versus optical interaction between metal nanoparticles, Opt. Lett. 33(9), 1029 (2008)CrossRefADSGoogle Scholar
  204. 204.
    J. Dorfmüller, D. Dregely, M. Esslinger, W. Khunsin, R. Vogelgesang, K. Kern, and H. Giessen, Near-field dynamics of optical Yagi-Uda nanoantennas, Nano Lett. 11(7), 2819 (2011)CrossRefGoogle Scholar
  205. 205.
    T. Zentgraf, J. Dorfmuller, C. Rockstuhl, C. Etrich, R. Vogelgesang, K. Kern, T. Pertsch, F. Lederer, and H. Giessen, Amplitude-and phase-resolved optical near fields of splitring-resonator-based metamaterials, Opt. Lett. 33(8), 848 (2008)CrossRefADSGoogle Scholar
  206. 206.
    B. Deutsch, R. Hillenbrand, and L. Novotny, Visualizing the optical interaction tensor of a gold nanoparticle pair, Nano Lett. 10(2), 652 (2010)CrossRefADSGoogle Scholar
  207. 207.
    H. A. Bechtel, J. P. Camden, Z. H. Kim, D. J. A. Brown, and R. N. Zare, Abstracts of Papers of the American Chemical Society 228, U275 (2004)Google Scholar
  208. 208.
    P. Alonso-Gonzalez, M. Schnell, P. Sarriugarte, H. Sobhani, C. Wu, N. Arju, A. Khanikaev, F. Golmar, P. Albella, L. Arzubiaga, F. Casanova, L. E. Hueso, P. Nordlander, G. Shvets, and R. Hillenbrand, Real-space mapping of fano interference in plasmonic metamolecules, Nano Lett. 11(9), 3922 (2011)CrossRefADSGoogle Scholar
  209. 209.
    P. Uebel, M. A. Schmidt, H. W. Lee, and P. S. J. Russell, Polarisation-resolved near-field mapping of a coupled gold nanowire array, Opt. Express 20(27), 28409 (2012)CrossRefADSGoogle Scholar
  210. 210.
    S. Mastel, S. E. Grefe, G. B. Cross, A. Taber, S. Dhuey, S. Cabrini, P. J. Schuck, and Y. Abate, Real-space mapping of nanoplasmonic hotspots via optical antenna-gap loading, Appl. Phys. Lett. 101(13), 131102 (2012)CrossRefADSGoogle Scholar
  211. 211.
    S. E. Grefe, D. Leiva, S. Mastel, S. D. Dhuey, S. Cabrini, P. J. Schuck, and Y. Abate, Near-field spatial mapping of strongly interacting multiple plasmonic infrared antennas, Phys. Chem. Chem. Phys. 15(43), 18944 (2013)CrossRefGoogle Scholar
  212. 212.
    T. Bauer, S. Orlov, U. Peschel, P. Banzer, and G. Leuchs, Nanointerferometric amplitude and phase reconstruction of tightly focused vector beams, Nat. Photonics 8(1), 23 (2014)CrossRefADSGoogle Scholar
  213. 213.
    N. Ocelic, A. Huber, and R. Hillenbrand, Pseudoheterodyne detection for background-free near-field spectroscopy, Appl. Phys. Lett. 89(10), 101124 (2006)CrossRefADSGoogle Scholar
  214. 214.
    M. L. M. Balistreri, J. P. Korterik, L. Kuipers, and N. F. van Hulst, Local observations of phase singularities in optical fields in waveguide structures, Phys. Rev. Lett. 85(2), 294 (2000)CrossRefADSGoogle Scholar
  215. 215.
    A. Nesci, R. Dandliker, and H. P. Herzig, Quantitative amplitude and phase measurement by use of a heterodyne scanning near-field optical microscope, Opt. Lett. 26(4), 208 (2001)CrossRefADSGoogle Scholar
  216. 216.
    E. Verhagen, M. Spasenovic, A. Polman, and L. Kuipers, Nanowire plasmon excitation by adiabatic mode transformation, Phys. Rev. Lett. 102(20), 203904 (2009)CrossRefADSGoogle Scholar
  217. 217.
    M. Burresi, D. Diessel, D. Oosten, S. Linden, M. Wegener, and L. Kuipers, Negative-index metamaterials: Looking into the unit cell, Nano Lett. 10(7), 2480 (2010)CrossRefADSGoogle Scholar
  218. 218.
    H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, Direct observation of Bloch harmonics and negative phase velocity in photonic crystal waveguides, Phys. Rev. Lett. 94(12), 123901 (2005)CrossRefADSGoogle Scholar
  219. 219.
    M. Ayache, M. P. Nezhad, S. Zamek, M. Abashin, and Y. Fainman, Near-field measurement of amplitude and phase in silicon waveguides with liquid cladding, Opt. Lett. 36(10), 1869 (2011)CrossRefADSGoogle Scholar
  220. 220.
    M. Burresi, R. J. P. Engelen, A. Opheij, D. van Oosten, D. Mori, T. Baba, and L. Kuipers, Observation of polarization singularities at the nanoscale, Phys. Rev. Lett. 102(3), 033902 (2009)CrossRefADSGoogle Scholar
  221. 221.
    N. Rotenberg, T. L. Krijger, B. Feber, M. Spasenovi, F. J. G. de Abajo, and L. Kuipers, Magnetic and electric response of single subwavelength holes, Phys. Rev. B 88(24), 241408 (2013)CrossRefADSGoogle Scholar
  222. 222.
    M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, Probing the magnetic field of light at optical frequencies, Science 326(5952), 550 (2009)CrossRefADSGoogle Scholar
  223. 223.
    M. Burresi, T. Kampfrath, D. van Oosten, J. C. Prangsma, B. S. Song, S. Noda, and L. Kuipers, Magnetic light-matter interactions in a photonic crystal nanocavity, Phys. Rev. Lett. 105(12), 123901 (2010)CrossRefADSGoogle Scholar
  224. 224.
    S. Vignolini, F. Intonti, F. Riboli, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, D. S. Wiersma, and M. Gurioli, Magnetic imaging in photonic crystal microcavities, Phys. Rev. Lett. 105(12), 123902 (2010)CrossRefADSGoogle Scholar
  225. 225.
    M. Spasenovi, D. M. Beggs, P. Lalanne, T. F. Krauss, and L. Kuipers, Measuring the spatial extent of individual localized photonic states, Phys. Rev. B 86(15), 155153 (2012)CrossRefADSGoogle Scholar
  226. 226.
    S. R. Huisman, G. Ctistis, S. Stobbe, A. P. Mosk, J. L. Herek, A. Lagendijk, P. Lodahl, W. L. Vos, and P. W. H. Pinkse, Measurement of a band-edge tail in the density of states of a photonic-crystal waveguide, Phys. Rev. B 86(15), 155154 (2012)CrossRefADSGoogle Scholar
  227. 227.
    D. Denkova, N. Verellen, A. V. Silhanek, V. K. Valev, P. V. Dorpe, and V. V. Moshchalkov, Mapping magnetic nearfield distributions of plasmonic nanoantennas, ACS Nano 7(4), 3168 (2013)CrossRefGoogle Scholar
  228. 228.
    D. Denkova, N. Verellen, A. V. Silhanek, P. Van Dorpe, and V. V. Moshchalkov, Lateral magnetic near-field imaging of plasmonic nanoantennas with increasing complexity, Small 10(10), 1959 (2014)CrossRefGoogle Scholar
  229. 229.
    H. W. Kihm, S. M. Koo, Q. H. Kim, K. Bao, J. E. Kihm, W. S. Bak, S. H. Eah, C. Lienau, H. Kim, P. Nordlander, N. J. Halas, N. K. Park, and D. S. Kim, Bethe-hole polarization analyser for the magnetic vector of light, Nat. Commun. 2, 451 (2011)CrossRefADSGoogle Scholar
  230. 230.
    H. W. Kihm, J. Kim, S. Koo, J. Ahn, K. Ahn, K. Lee, N. Park, and D. S. Kim, Optical magnetic field mapping using a subwavelength aperture, Opt. Express 21(5), 5625 (2013)CrossRefADSGoogle Scholar
  231. 231.
    B. le Feber, N. Rotenberg, D. M. Beggs, and L. Kuipers, Simultaneous measurement of nanoscale electric and magnetic optical fields, Nat. Photonics 8(1), 43 (2014)CrossRefADSGoogle Scholar
  232. 232.
    N. Caselli, F. La China, W. Bao, F. Riboli, A. Gerardino, L. Li, E. H. Linfield, F. Pagliano, A. Fiore, P. J. Schuck, S. Cabrini, A. Weber-Bargioni, M. Gurioli, and F. Intonti, Deep-subwavelength imaging of both electric and magnetic localized optical fields by plasmonic campanile nanoantenna, Sci. Rep. 5, 9606 (2015)CrossRefADSGoogle Scholar
  233. 233.
    H. U. Yang, R. L. Olmon, K. S. Deryckx, X. G. Xu, H. A. Bechtel, Y. Xu, B. A. Lail, and M. B. Raschke, Accessing the optical magnetic near-field through Babinet’s principle, ACS Photonics 1(9), 894 (2014)CrossRefGoogle Scholar
  234. 234.
    L. Novotny, R. X. Bian, and X. S. Xie, Theory of nanometric optical tweezers, Phys. Rev. Lett. 79(4), 645 (1997)CrossRefADSGoogle Scholar
  235. 235.
    J. Berthelot, S. S. Acimovic, M. L. Juan, M. P. Kreuzer, J. Renger, and R. Quidant, Three-dimensional manipulation with scanning near-field optical nanotweezers, Nat. Nanotechnol. 9(4), 295 (2014)CrossRefADSGoogle Scholar
  236. 236.
    R. M. Gelfand, S. Wheaton, and R. Gordon, Cleaved fiber optic double nanohole optical tweezers for trapping nanoparticles, Opt. Lett. 39(22), 6415 (2014)CrossRefADSGoogle Scholar
  237. 237.
    J. Jose, S. Kress, A. Barik, L. M. Otto, J. Shaver, T. W. Johnson, Z. J. Lapin, P. Bharadwaj, L. Novotny, and S. H. Oh, Individual template-stripped conductive gold pyramids for tip-enhanced dielectrophoresis, ACS Photonics 1(5), 464 (2014)CrossRefGoogle Scholar
  238. 238.
    N. M. Hameed, A. El Eter, T. Grosjean, and F. I. Baida, Stand-alone three-dimensional optical tweezers based on fibred Bowtie nanoaperture, IEEE Photonics J. 6(4), 4500510 (2014)CrossRefGoogle Scholar
  239. 239.
    S. Wheaton, R. M. Gelfand, and R. Gordon, Probing the Raman-active acoustic vibrations of nanoparticles with extraordinary spectral resolution, Nat. Photonics 9(1), 68 (2015)CrossRefADSGoogle Scholar
  240. 240.
    A. A. Al Balushi and R. Gordon, A label-free Untethered approach to single-molecule protein binding kinetics, Nano Lett. 14(10), 5787 (2014)CrossRefADSGoogle Scholar
  241. 241.
    H. K. Wickramasinghe, M. Chaigneau, R. Yasukuni, G. Picardi, and R. Ossikovski, Billion-fold increase in tipenhanced Raman signal, ACS Nano 8(4), 3421 (2014)CrossRefGoogle Scholar
  242. 242.
    I. Rajapaksa, K. Uenal, and H. K. Wickramasinghe, Image force microscopy of molecular resonance: A microscope principle, Appl. Phys. Lett. 97(7), 073121 (2010)CrossRefADSGoogle Scholar
  243. 243.
    J. Jahng, J. Brocious, D. A. Fishman, F. Huang, X. Li, V. A. Tamma, H. K.Wickramasinghe, and E. O. Potma, Gradient and scattering forces in photoinduced force microscopy, Phys. Rev. B 90(15), 155417 (2014)CrossRefADSGoogle Scholar
  244. 244.
    J. Jahng, J. Brocious, D. A. Fishman, S. Yampolsky, D. Nowak, F. Huang, V. A. Apkarian, H. K. Wickramasinghe, and E. O. Potma, Ultrafast pump-probe force microscopy with nanoscale resolution, Appl. Phys. Lett. 106(8), 083113 (2015)CrossRefADSGoogle Scholar
  245. 245.
    R. M. Gelfand, A. Bonakdar, O. G. Memis, and H. Mohseni, Super resolution mapping of the near optical field and the gradient optical force, Proc. SPIE 8815, Nanoimaging and Nanospectroscopy 8815, 88150R (2013)Google Scholar
  246. 246.
    A. Giugni, B. Torre, A. Toma, M. Francardi, M. Malerba, A. Alabastri, R. P. Zaccaria, M. I. Stockman, and E. Di Fabrizio, Hot-electron nanoscopy using adiabatic compression of surface plasmons, Nat. Nanotechnol. 8(11), 845 (2013)CrossRefADSGoogle Scholar
  247. 247.
    P. J. Schuck, Nanoimaging: Hot electrons go through the barrier, Nat. Nanotechnol. 8(11), 799 (2013)CrossRefADSGoogle Scholar
  248. 248.
    A. O. Govorov, H. Zhang, and Y. K. Gun’ko, Theory of photoinjection of hot plasmonic carriers from metal nanostructures into semiconductors and surface molecules, J. Phys. Chem. C 117(32), 16616 (2013)CrossRefGoogle Scholar
  249. 249.
    A. Polyakov, C. Senft, K. F. Thompson, J. Feng, S. Cabrini, P. J. Schuck, H. A. Padmore, S. J. Peppernick, and W. P. Hess, Plasmon-enhanced photocathode for high brightness and high repetition rate X-ray sources, Phys. Rev. Lett. 110(7), 076802 (2013)CrossRefADSGoogle Scholar
  250. 250.
    W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y. T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer, Nat. Photonics 3(4), 220 (2009)CrossRefADSGoogle Scholar
  251. 251.
    B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J. L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, Magnetic recording at 1.5 Pb m-2 using an integrated plasmonic antenna, Nat. Photonics 4(7), 484 (2010)CrossRefADSGoogle Scholar
  252. 252.
    R. Vincent, H. Marinchio, J. J. Saenz, and R. Carminati, Local control of the excitation of surface plasmon polaritons by near-field magneto-optical Kerr effect, Phys. Rev. B 90(24), 241412 (2014)CrossRefADSGoogle Scholar
  253. 253.
    P. S. Keatley, A. Aziz, M. Ali, B. J. Hickey, M. G. Blamire, and R. J. Hicken, Optical characterization of nonlocal spin transfer torque acting on a single nanomagnet, Phys. Rev. B 89(9), 094421 (2014)CrossRefADSGoogle Scholar
  254. 254.
    P. Biagioni, J. S. Huang, L. Duo, M. Finazzi, and B. Hecht, Cross resonant optical antenna, Phys. Rev. Lett. 102(25), 256801 (2009)CrossRefADSGoogle Scholar
  255. 255.
    Z. Zhang, A. Weber-Bargioni, S. W. Wu, S. Dhuey, S. Cabrini, and P. J. Schuck, Manipulating nanoscale light fields with the asymmetric Bowtie nano-colorsorter, Nano Lett. 9(12), 4505 (2009)CrossRefADSGoogle Scholar
  256. 256.
    A. McLeod, A. Weber-Bargioni, Z. Zhang, S. Dhuey, B. Harteneck, J. B. Neaton, S. Cabrini, and P. J. Schuck, Nonperturbative visualization of nanoscale plasmonic field distributions via photon localization microscopy, Phys. Rev. Lett. 106(3), 037402 (2011)CrossRefADSGoogle Scholar
  257. 257.
    P. Biagioni, M. Savoini, J. S. Huang, L. Duo, M. Finazzi, and B. Hecht, Near-field polarization shaping by a near-resonant plasmonic cross antenna, Phys. Rev. B 80(15), 153409 (2009)CrossRefADSGoogle Scholar
  258. 258.
    D. Lin and J. S. Huang, Slant-gap plasmonic nanoantennas for optical chirality engineering and circular dichroism enhancement, Opt. Express 22(7), 7434 (2014)CrossRefADSGoogle Scholar
  259. 259.
    Y. Tang and A. E. Cohen, Enhanced enantioselectivity in excitation of chiral molecules by superchiral light, Science 332(6027), 333 (2011)CrossRefADSGoogle Scholar
  260. 260.
    E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, Ultrasensitive detection and characterization of biomolecules using superchiral fields, Nat. Nanotechnol. 5(11), 783 (2010)CrossRefADSGoogle Scholar
  261. 261.
    B. le Feber, N. Rotenberg, and L. Kuipers, Nanophotonic control of circular dipole emission, Nat. Commun. 6, 6695 (2015)CrossRefADSGoogle Scholar
  262. 262.
    I. Söllner, S. Mahmoodian, S. L. Hansen, L. Midolo, A. Javadi, G. Kiršanskė, T. Pregnolato, H. El-Ella, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, Deterministic photon–emitter coupling in chiral photonic circuits, Nat. Nanotechnol. 10(9), 775 (2015)CrossRefADSGoogle Scholar
  263. 263.
    J. Rudge, H. Xu, J. Kolthammer, Y. K. Hong, and B. C. Choi, Sub-nanosecond time-resolved near-field scanning magneto-optical microscope, Rev. Sci. Instrum. 86(2), 023703 (2015)CrossRefADSGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • P. James Schuck
    • 1
  • Wei Bao
    • 1
    • 2
  • Nicholas J. Borys
    • 1
  1. 1.Molecular FoundryLawrence Berkeley National LaboratoryBerkeleyUSA
  2. 2.Department of Materials Science and EngineeringUniversity of CaliforniaBerkeleyUSA

Personalised recommendations