Frontiers of Physics

, Volume 10, Issue 3, pp 276–286 | Cite as

Recent advances in MXene: Preparation, properties, and applications

  • Jin-Cheng Lei (雷进程)
  • Xu Zhang (张旭)
  • Zhen Zhou (周震)Email author
Review Article


Owing to the exceptional properties of graphene, intensive studies have been carried out on novel two-dimensional (2D) materials. In the past several years, an elegant exfoliation approach has been used to successfully create a new family of 2D transition metal carbides, nitrides, and carbonitrides, termed MXene, from layered MAX phases. More recently, some unique properties of MXene have been discovered leading to proposals of potential applications. In this review, we summarize the latest progress in development of MXene from both a theoretical and experimental view, with emphasis on the possible applications.


MXene exfoliation graphene 2D materials supercapacitors 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306(5696), 666 (2004)ADSCrossRefGoogle Scholar
  2. 2.
    A. K. Geim and K. S. Novoselov, The rise of graphene, Nat. Mater. 6(3), 183 (2007)ADSCrossRefGoogle Scholar
  3. 3.
    S. Guo and S. Dong, Graphene nanosheet: Synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications, Chem. Soc. Rev. 40(5), 2644 (2011)CrossRefGoogle Scholar
  4. 4.
    V. Singh, D. Joung, L. Zhai, S. Das, S. I. Khondaker, and S. Seal, Graphene based materials: Past, present and future, Prog. Mater. Sci. 56(8), 1178 (2011)CrossRefGoogle Scholar
  5. 5.
    T. Kuila, S. Bose, A. K. Mishra, P. Khanra, N. H. Kim, and J. H. Lee, Chemical functionalization of graphene and its applications, Prog. Mater. Sci. 57(7), 1061 (2012)CrossRefGoogle Scholar
  6. 6.
    Q. Tang, Z. Zhou, and Z. Chen, Graphene-related nanomaterials: Tuning properties by functionalization, Nanoscale 5(11), 4541 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    Q. Tang and Z. Zhou, Graphene-analogous low-dimensional materials, Prog. Mater. Sci. 58(8), 1244 (2013)MathSciNetCrossRefGoogle Scholar
  8. 8.
    M. Naguib and Y. Gogotsi, Synthesis of two-dimensional materials by selective extraction, Acc. Chem. Res. 48(1), 128 (2015)CrossRefGoogle Scholar
  9. 9.
    Y. Jing, Z. Zhou, C. R. Cabrera, and Z. Chen, Graphene, inorganic graphene analogs and their composites for lithium ion batteries, J. Mater. Chem. A 2(31), 12104 (2014)CrossRefGoogle Scholar
  10. 10.
    M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, and M. W. Barsoum, Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2, Adv. Mater. 23(37), 4248 (2011)CrossRefGoogle Scholar
  11. 11.
    I. R. Shein and A. L. Ivanovskii, Graphene-like nanocarbides and nanonitrides of d metals (MXenes): synthesis, properties and simulation, Micro & Nano Lett. 8(2), 59 (2013)CrossRefGoogle Scholar
  12. 12.
    M. W. Barsoum and M. A. X. Phases, Properties of Machinable Ternary Carbides and Nitrides, Wiley & Sons, 2013CrossRefGoogle Scholar
  13. 13.
    M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu, L. Hultman, Y. Gogotsi, and M. W. Barsoum, Two-dimensional transition metal carbides, ACS Nano 6(2), 1322 (2012)CrossRefGoogle Scholar
  14. 14.
    M. Naguib, J. Halim, J. Lu, K. M. Cook, L. Hultman, Y. Gogotsi, and M. W. Barsoum, New two-dimensional niobium and vanadium carbides as promising materials for li-ion batteries, J. Am. Chem. Soc. 135(43), 15966 (2013)CrossRefGoogle Scholar
  15. 15.
    M. Ghidiu, M. Naguib, C. Shi, O. Mashtalir, L. M. Pan, B. Zhang, J. Yang, Y. Gogotsi, S. J. L. Billinge, and M. W. Barsoum, Synthesis and characterization of two-dimensional Nb4C3 (MXene), Chem. Commun. 50(67), 9517 (2014)CrossRefGoogle Scholar
  16. 16.
    O. Mashtalir, K. M. Cook, V.N. Mochalin, M. Crowe, M. W. Barsoum, and Y. Gogotsi, Dye adsorption and decomposition on two-dimensional titanium carbide in aqueous media, J. Mater. Chem. A 2(35), 14334 (2014)CrossRefGoogle Scholar
  17. 17.
    M. Kurtoglu, M. Naguib, Y. Gogotsi, and M. W. Barsoum, First principles study of two-dimensional early transition metal carbides, MRS Commun. 2(04), 133 (2012)CrossRefGoogle Scholar
  18. 18.
    M. Khazaei, M. Arai, T. Sasaki, C. Y. Chung, N. S. Venkataramanan, M. Estili, Y. Sakka, and Y. Kawazoe, Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides, Adv. Funct. Mater. 23(17), 2185 (2013)CrossRefGoogle Scholar
  19. 19.
    J. Come, M. Naguib, P. Rozier, M. W. Barsoum, Y. Gogotsi, P. L. Taberna, M. Morcrette, and P. Simon, A non-aqueous asymmetric cell with a Ti2C-based two-dimensional negative electrode, J. Electrochem. Soc. 159(8), A1368 (2012)CrossRefGoogle Scholar
  20. 20.
    J. Hu, B. Xu, C. Ouyang, S. A. Yang, and Y. Yao, Investigations on V2C and V2CX2 (X = F, OH) monolayer as a promising anode material for li ion batteries from firstprinciples calculations, J. Phys. Chem. C 118(42), 24274 (2014)CrossRefGoogle Scholar
  21. 21.
    X. Xie, S. Chen, W. Ding, Y. Nie, and Z. Wei, An extraordinarily stable catalyst: Pt NPs supported on two-dimensional Ti3C2X2 (X = OH, F) nanosheets for oxygen reduction reaction, Chem. Commun. 49(86), 10112 (2013)CrossRefGoogle Scholar
  22. 22.
    F. Wang, C. H. Yang, C. Y. Duan, D. Xiao, Y. Tang, and J. F. Zhu, An organ-like titanium carbide material (MXene) with multilayer structure encapsulating hemoglobin for a mediator-free biosensor, J. Electrochem. Soc. 162(1), B16 (2015)CrossRefGoogle Scholar
  23. 23.
    M. Naguib, V. N. Mochalin, M. W. Barsoum, and Y. Gogotsi, 25th anniversary article: MXenes: A new family of two-dimensional materials, Adv. Mater. 26(7), 992 (2014)CrossRefGoogle Scholar
  24. 24.
    O. Mashtalir, M. Naguib, V. N. Mochalin, Y. Dall’Agnese, M. Heon, M. W. Barsoum, and Y. Gogotsi, Intercalation and delamination of layered carbides and carbonitrides, Nat. Commun. 4, 1716 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    F. Chang, C. Li, J. Yang, H. Tang, and M. Xue, Synthesis of a new graphene-like transition metal carbide by deintercalating Ti3AlC2, Mater. Lett. 109, 295 (2013)CrossRefGoogle Scholar
  26. 26.
    J. Halim, M. R. Lukatskaya, K. M. Cook, J. Lu, C. R. Smith, L. A. Naslund, S. J. May, L. Hultman, Y. Gogotsi, P. Eklund, and M. W. Barsoum, Transparent conductive twodimensional titanium carbide epitaxial thin films, Chem. Mater. 26(7), 2374 (2014)CrossRefGoogle Scholar
  27. 27.
    M. Ghidiu, M. R. Lukatskaya, M. Q. Zhao, Y. Gogotsi, and M. W. Barsoum, Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance, Nature 516(7529), 78 (2014)ADSGoogle Scholar
  28. 28.
    O. Mashtalir, M. Naguib, B. Dyatkin, Y. Gogotsi, and M. W. Barsoum, Kinetics of aluminum extraction from Ti3AlC2 in hydrofluoric acid, Mater. Chem. Phys. 139(1), 147 (2013)CrossRefGoogle Scholar
  29. 29.
    Y. Xie, M. Naguib, V. N. Mochalin, M. W. Barsoum, Y. Gogotsi, X. Q. Yu, K. W. Nam, X. Q. Yang, A. I. Kolesnikov, and P. R. C. Kent, Role of surface structure on li-ion energy storage capacity of two-dimensional transition-metal carbides, J. Am. Chem. Soc. 136(17), 6385 (2014)CrossRefGoogle Scholar
  30. 30.
    Y. Xie, Y. Dall’Agnese, M. Naguib, Y. Gogotsi, M. W. Barsoum, H. L. L. Zhuang, and P. R. C. Kent, Prediction and characterization of MXene nanosheet anodes for nonlithiumion batteries, ACS Nano 8(9), 9606 (2014)CrossRefGoogle Scholar
  31. 31.
    T. Hu, J. Wang, H. Zhang, Z. Li, M. Hu, and X. Wang, Vibrational properties of Ti3C2 and Ti3C2T2 (T = O, F, OH) monosheets by first-principles calculations: A comparative study, Phys. Chem. Chem. Phys. 17(15), 9997 (2015)CrossRefGoogle Scholar
  32. 32.
    Q. Tang, Z. Zhou, and P. W. Shen, Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X = F, OH) monolayer, J. Am. Chem. Soc. 134(40), 16909 (2012)CrossRefGoogle Scholar
  33. 33.
    X. Wang, X. Shen, Y. Gao, Z. Wang, R. Yu, and L. Chen, Atomic-scale recognition of surface structure and intercalation mechanism of Ti3C2X, J. Am. Chem. Soc. 137(7), 2715 (2015)CrossRefGoogle Scholar
  34. 34.
    A. N. Enyashin and A. L. Ivanovskii, Two-dimensional titanium carbonitrides and their hydroxylated derivatives: Structural, electronic properties and stability of MXenes Ti3C2txNx(OH)2 from DFTB calculations, J. Solid State Chem. 207, 42 (2013)ADSCrossRefGoogle Scholar
  35. 35.
    V. Mauchamp, M. Bugnet, E. P. Bellido, G. A. Botton, P. Moreau, D. Magne, M. Naguib, T. Cabioc’h, and M. W. Barsoum, Enhanced and tunable surface plasmons in two-dimensional Ti3C2 stacks: Electronic structure versus boundary effects, Phys. Rev. B 89(23), 235428 (2014)ADSCrossRefGoogle Scholar
  36. 36.
    I. R. Shein and A. L. Ivanovskii, Planar nano-block structures Tin+1Al0.5Cn and Tin+1Cn (n=1, and 2) from MAX phases: Structural, electronic properties and relative stability from first principles calculations, Superlattices Microstruct. 52(2), 147 (2012)ADSCrossRefGoogle Scholar
  37. 37.
    I. R. Shein and A. L. Ivanovskii, Graphene-like titanium carbides and nitrides Tin+1Cn, Tin+1Nn (n=1, 2, and 3) from de-intercalated MAX phases: First-principles probing of their structural, electronic properties and relative stability, Comput. Mater. Sci. 65, 104 (2012)CrossRefGoogle Scholar
  38. 38.
    Y. Xie and P. R. C. Kent, Hybrid density functional study of structural and electronic properties of functionalized Tin+1Xn (X = C, N) monolayers, Phys. Rev. B 87(23), 235441 (2013)ADSCrossRefGoogle Scholar
  39. 39.
    S. Zhao, W. Kang, and J. Xue, Manipulation of electronic and magnetic properties of M2C (M = Hf, Nb, Sc, Ta, Ti, V, Zr) monolayer by applying mechanical strains, Appl. Phys. Lett. 104(13), 133106 (2014)ADSCrossRefGoogle Scholar
  40. 40.
    S. Wang, J. X. Li, Y. L. Du, and C. Cui, First-principles study on structural, electronic and elastic properties of graphene-like hexagonal Ti2C monolayer, Comput. Mater. Sci. 83, 290 (2014)CrossRefGoogle Scholar
  41. 41.
    M. Khazaei, M. Arai, T. Sasaki, M. Estili, and Y. Sakka, Two-dimensional molybdenum carbides: Potential thermoelectric materials of the MXene family, Phys. Chem. Chem. Phys. 16(17), 7841 (2014)CrossRefGoogle Scholar
  42. 42.
    H. Lashgari, M. R. Abolhassani, A. Boochani, S. M. Elahi, and J. Khodadadi, Electronic and optical properties of 2D graphene-like compounds titanium carbides and nitrides: DFT calculations, Solid State Commun. 195, 61 (2014)ADSCrossRefGoogle Scholar
  43. 43.
    A. N. Enyashin and A. L. Ivanovskii, Structural and electronic properties and stability of MXenes Ti2C and Ti3C2 functionalized by Methoxy groups, J. Phys. Chem. C 117(26), 13637 (2013)CrossRefGoogle Scholar
  44. 44.
    Y. Lee, S. B. Cho, and Y. C. Chung, Tunable indirect to direct band gap transition of monolayer Sc2CO2 by the strain effect, ACS Appl. Mater. Interfaces 6(16), 14724 (2014)CrossRefGoogle Scholar
  45. 45.
    Y. Lee, Y. Hwang, S. B. Cho, and Y. C. Chung, Achieving a direct band gap in oxygen functionalized-monolayer scandium carbide by applying an electric field, Phys. Chem. Chem. Phys. 16(47), 26273 (2014)CrossRefGoogle Scholar
  46. 46.
    N. J. Lane, M. W. Barsoum, and J. M. Rondinelli, Correlation effects and spin-orbit interactions in two-dimensional hexagonal 5d transition metal carbides, Tan+1Cn (n = 1,2,3), EPL 101(5), 57004 (2013)ADSCrossRefGoogle Scholar
  47. 47.
    M. Naguib, O. Mashtalir, M. R. Lukatskaya, B. Dyatkin, C. Zhang, V. Presser, Y. Gogotsi, and M. W. Barsoum, Onestep synthesis of nanocrystalline transition metal oxides on thin sheets of disordered graphitic carbon by oxidation of MXenes, Chem. Commun. 50(56), 7420 (2014)CrossRefGoogle Scholar
  48. 48.
    H. Ghassemi, W. Harlow, O. Mashtalir, M. Beidaghi, M. R. Lukatskaya, Y. Gogotsi, and M. L. Taheri, In situ environmental transmission electron microscopy study of oxidation of two-dimensional Ti3C2 and formation of carbonsupported TiO2, J. Mater. Chem. A Mater. Energy Sustain. 2(35), 14339 (2014)CrossRefGoogle Scholar
  49. 49.
    Z. Y. Li, L. B. Wang, D. D. Sun, Y. D. Zhang, B. Z. Liu, Q. K. Hu, and A. G. Zhou, Synthesis and thermal stability of two-dimensional carbide MXene Ti3C2, Mater. Sci. Eng. B 191, 33 (2015)CrossRefGoogle Scholar
  50. 50.
    J. X. Li, Y. L. Du, C. X. Huo, S. Wang, and C. Cui, Thermal stability of two-dimensional Ti2C nanosheets, Ceram. Int. 41(2), 2631 (2015)CrossRefGoogle Scholar
  51. 51.
    M. Naguib, J. Come, B. Dyatkin, V. Presser, P. L. Taberna, P. Simon, M. W. Barsoum, and Y. Gogotsi, MXene: A promising transition metal carbide anode for lithium-ion batteries, Electrochem. Commun. 16(1), 61 (2012)CrossRefGoogle Scholar
  52. 52.
    C. Eames and M. S. Islam, Ion intercalation into two-dimensional transition-metal carbides: Global screening for new high-capacity battery materials, J. Am. Chem. Soc. 136(46), 16270 (2014)CrossRefGoogle Scholar
  53. 53.
    D. D. Sun, M. S. Wang, Z. Y. Li, G. X. Fan, L. Z. Fan, and A. G. Zhou, Two-dimensional Ti3C2 as anode material for Li-ion batteries, Electrochem. Commun. 47, 80 (2014)CrossRefGoogle Scholar
  54. 54.
    M. D. Levi, M. R. Lukatskaya, S. Sigalov, M. Beidaghi, N. Shpigel, L. Daikhin, D. Aurbach, M. W. Barsoum, and Y. Gogotsi, Adv. Energy Mater. 5, 1400815 (2014)Google Scholar
  55. 55.
    S. J. Zhao, W. Kang, and J. M. Xue, Role of strain and concentration on the li adsorption and diffusion properties on Ti2C layer, J. Phys. Chem. C 118(27), 14983 (2014)CrossRefGoogle Scholar
  56. 56.
    J. B. Goodenough and K. S. Park, The Li-ion rechargeable battery: A perspective, J. Am. Chem. Soc. 135(4), 1167 (2013)CrossRefGoogle Scholar
  57. 57.
    D. Q. Er, J.W. Li, M. Naguib, Y. Gogotsi, and V. B. Shenoy, Ti3C2 MXene as a high capacity electrode material for metal (Li, Na, K, Ca) ion batteries, ACS Appl. Mater. Interfaces 6(14), 11173 (2014)CrossRefGoogle Scholar
  58. 58.
    M. R. Lukatskaya, O. Mashtalir, C. E. Ren, Y. Dall’Agnese, P. Rozier, P. L. Taberna, M. Naguib, P. Simon, M.W. Barsoum, and Y. Gogotsi, Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide, Science 341(6153), 1502 (2013)ADSCrossRefGoogle Scholar
  59. 59.
    E. Yang, H. Ji, J. Kim, H. Kim, and Y. Jung, Exploring the possibilities of two-dimensional transition metal carbides as anode materials for sodium batteries, Phys. Chem. Chem. Phys. 17(7), 5000 (2015)CrossRefGoogle Scholar
  60. 60.
    Y. Dall’Agnese, M. R. Lukatskaya, K. M. Cook, P. L. Taberna, Y. Gogotsi, and P. Simon, High capacitance of surface-modified 2D titanium carbide in acidic electrolyte, Electrochem. Commun. 48, 118 (2014)CrossRefGoogle Scholar
  61. 61.
    Z. Ling, C. E. Ren, M. Q. Zhao, J. Yang, J. M. Giammarco, J. S. Qiu, M. W. Barsoum, and Y. Gogotsi, Flexible and conductive MXene films and nanocomposites with high capacitance, Proc. Natl. Acad. Sci. USA 111(47), 16676 (2014)ADSCrossRefGoogle Scholar
  62. 62.
    M. Q. Zhao, C. E. Ren, Z. Ling, M. R. Lukatskaya, C. Zhang, K. L. Van Aken, M. W. Barsoum, and Y. Gogotsi, Flexible MXene/carbon nanotube composite paper with high volumetric capacitance, Adv. Mater. 27(2), 339 (2015)CrossRefGoogle Scholar
  63. 63.
    X. Liang, A. Garsuch, and L. F. Nazar, Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium-sulfur batteries, Angew. Chem. Int. Ed. 54(13), 3907 (2015)CrossRefGoogle Scholar
  64. 64.
    X. Wang, S. Kajiyama, H. Iinuma, E. Hosono, S. Oro, I. Moriguchi, M. Okubo, and A. Yamada, Pseudocapacitance of MXene nanosheets for high-power sodium-ion hybrid capacitors, Nat. Commun. 6, 6544 (2015)ADSCrossRefGoogle Scholar
  65. 65.
    Q.M. Peng, J. X. Guo, Q. R. Zhang, J. Y. Xiang, B. Z. Liu, A. G. Zhou, R. P. Liu, and Y. J. Tian, Unique lead adsorption behavior of activated hydroxyl group in two-dimensional titanium carbide, J. Am. Chem. Soc. 136(11), 4113 (2014)CrossRefGoogle Scholar
  66. 66.
    Q. K. Hu, D. D. Sun, Q. H. Wu, H. Y. Wang, L. B. Wang, B. Z. Liu, A. G. Zhou, and J. L. He, MXene: A new family of promising hydrogen storage medium, J. Phys. Chem. A 117(51), 14253 (2013)CrossRefGoogle Scholar
  67. 67.
    Q. K. Hu, H. Y. Wang, Q. H. Wu, X. T. Ye, A. G. Zhou, D. D. Sun, L. B. Wang, B. Z. Liu, and J. L. He, Twodimensional Sc2C: A reversible and high-capacity hydrogen storage material predicted by first-principles calculations, Int. J. Hydrogen Energy 39(20), 10606 (2014)CrossRefGoogle Scholar
  68. 68.
    X. Li, G. Fan, and C. Zeng, Synthesis of ruthenium nanoparticles deposited on graphene-like transition metal carbide as an effective catalyst for the hydrolysis of sodium borohydride, Int. J. Hydrogen Energy 39(27), 14927 (2014)CrossRefGoogle Scholar
  69. 69.
    Y. P. Gao, L. B. Wang, Z. Y. Li, A. G. Zhou, Q. K. Hu, and X. X. Cao, Preparation of MXene-Cu2O nanocomposite and effect on thermal decomposition of ammonium perchlorate, Solid State Sci. 35, 62 (2014)ADSCrossRefGoogle Scholar
  70. 70.
    J. Yang, B. Chen, H. Song, H. Tang, and C. Li, Synthesis, characterization, and tribological properties of twodimensional Ti3C2, Cryst. Res. Technol. 49(11), 926 (2014)CrossRefGoogle Scholar
  71. 71.
    X. H. Zhang, M. Q. Xue, X. H. Yang, Z. P. Wang, G. S. Luo, Z. D. Huang, X. L. Sui, and C. S. Li, Preparation and tribological properties of Ti3C2(OH)2 nanosheets as additives in base oil, RSC Adv. 5(4), 2762 (2015)CrossRefGoogle Scholar
  72. 72.
    Z. N. Ma, Z. P. Hu, X. D. Zhao, Q. Tang, D. H. Wu, Z. Zhou, and L. X. Zhang, Tunable band structures of heterostructured bilayers with transition-metal dichalcogenide and MXene monolayer, J. Phys. Chem. C 118(10), 5593 (2014)CrossRefGoogle Scholar
  73. 73.
    J. Chen, K. Chen, D. Tong, Y. Huang, J. Zhang, J. Xue, Q. Huang, and T. Chen, CO2 and temperature dual responsive “Smart” MXene phases, Chem. Commun. 51(2), 314 (2015)CrossRefGoogle Scholar
  74. 74.
    Y. Lee, Y. Hwang, and Y. C. Chung, Achieving type I, II, and III heterojunctions using functionalized MXene, ACS Appl. Mater. Interfaces 7(13), 7163 (2015)CrossRefGoogle Scholar
  75. 75.
    X. Li, Y. Dai, Y. Ma, Q. Liu, and B. Huang, Intriguing electronic properties of two-dimensional MoS2 /TM2CO2 (TM = Ti, Zr, or Hf) hetero-bilayers: Type-II semiconductors with tunable band gaps, Nanotechnology 26(13), 135703 (2015)ADSCrossRefGoogle Scholar
  76. 76.
    X. Zhang, Z. Ma, X. Zhao, Q. Tang, and Z. Zhou, Computational studies on structural and electronic properties of functionalized MXene monolayers and nanotubes, J. Mater. Chem. A 3(9), 4960 (2015)CrossRefGoogle Scholar
  77. 77.
    S. J. Zhao, W. Kang, and J. M. Xue, MXene nanoribbons, J. Mater. Chem. C 3(4), 879 (2015)CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Jin-Cheng Lei (雷进程)
    • 1
  • Xu Zhang (张旭)
    • 1
  • Zhen Zhou (周震)
    • 1
    Email author
  1. 1.Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Computational Centre for Molecular Science, Institute of New Energy Material Chemistry, School of Materials Science and Engineering, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)Nankai UniversityTianjinChina

Personalised recommendations