Advertisement

Frontiers of Physics

, Volume 10, Issue 3, pp 343–350 | Cite as

Shuttle-run synchronization in mobile ad hoc networks

  • Sheng-Fei Ma
  • Hong-Jie Bi
  • Yong Zou
  • Zong-Hua Liu
  • Shu-Guang GuanEmail author
Research Article

Abstract

In this work, we study the collective dynamics of phase oscillators in a mobile ad hoc network whose topology changes dynamically. As the network size or the communication radius of individual oscillators increases, the topology of the ad hoc network first undergoes percolation, forming a giant cluster, and then gradually achieves global connectivity. It is shown that oscillator mobility generally enhances the coherence in such networks. Interestingly, we find a new type of phase synchronization/clustering, in which the phases of the oscillators are distributed in a certain narrow range, while the instantaneous frequencies change signs frequently, leading to shuttle-run-like motion of the oscillators in phase space. We conduct a theoretical analysis to explain the mechanism of this synchronization and obtain the critical transition point.

Keywords

synchronization phase transition ad hoc network 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. E. Perkins, Ad Hoc Networking, New York: Addison-Wesley, 2000Google Scholar
  2. 2.
    T. Camp, J. Boleng, and V. Davies, A survey of mobility models for ad hoc network research, Wireless Commun. Mobile Comput. 2(5), 483 (2002)CrossRefGoogle Scholar
  3. 3.
    S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D. U. Hwang, Complex networks: Structure and dynamics, Phys. Rep. 424(4–5), 175 (2006)MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    S. Liu, Z. W. He, and M. Zhan, Firing rates of coupled noisy excitable elements, Front. Phys. 9(1), 120 (2014)CrossRefGoogle Scholar
  5. 5.
    Y. Zhang and W. H. Wan, States and transitions in mixed networks, Front. Phys. 9(4), 523 (2014)MathSciNetCrossRefGoogle Scholar
  6. 6.
    P. Ke and Z. G. Zheng, Dynamics of rotator chain with dissipative boundary, Front. Phys. 9(4), 511 (2014)CrossRefGoogle Scholar
  7. 7.
    F. Sivrikaya and B. Yener, Time synchronization in sensor networks: A survey, IEEE Netw. 18(4), 45 (2004)CrossRefGoogle Scholar
  8. 8.
    C. Thiemann, M. Treiber, and A. Kesting, Longitudinal hopping in intervehicle communication: Theory and simulations on modeled and empirical trajectory data, Phys. Rev. E 78(3), 036102 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    Z. Liu, Effect of mobility in partially occupied complex networks, Phys. Rev. E 81(1), 016110 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    N. Fujiwara, J. Kurths, and A. Díaz-Guilera, Synchronization in networks of mobile oscillators, Phys. Rev. E 83(2), 025101 (2011) (R)ADSCrossRefGoogle Scholar
  11. 11.
    M. Frasca, A. Buscarino, A. Rizzo, L. Fortuna, and S. Boccaletti, Synchronization of moving chaotic agents, Phys. Rev. Lett. 100(4), 044102 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    L. Wang, C. P. Zhu, and Z. M. Gu, Scaling of critical connectivity of mobile ad hoc networks, Phys. Rev. E 78(6), 066107 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence, New York: Springer, 1984zbMATHCrossRefGoogle Scholar
  14. 14.
    S. H. Strogatz, From Kuramoto to Crawford: Exploring the onset of synchronization in populations of coupled oscillators, Physica D 143, 1 (2000)zbMATHMathSciNetADSCrossRefGoogle Scholar
  15. 15.
    W. Krause, I. Glauche, R. Sollacher, and M. Greiner, Impact of network structure on the capacity of wireless multihop ad hoc communication, Physica A 338(3–4), 633 (2004)MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Sheng-Fei Ma
    • 1
  • Hong-Jie Bi
    • 1
  • Yong Zou
    • 1
    • 2
  • Zong-Hua Liu
    • 1
    • 2
  • Shu-Guang Guan
    • 1
    • 2
    Email author
  1. 1.Department of PhysicsEast China Normal UniversityShanghaiChina
  2. 2.State Key Laboratory of Theoretical Physics, Institute of Theoretical PhysicsChinese Academy of SciencesBeijingChina

Personalised recommendations