Advertisement

Frontiers of Physics

, Volume 10, Issue 4, pp 1–9 | Cite as

First-principle study on the optical response of phosphorene

  • Jia-He Lin
  • Hong ZhangEmail author
  • Xin-Lu Cheng
Research Article

Abstract

The optical response of phosphorene nanostructures was studied using time-dependent density functional theory (TDDFT). Compared with the absorption spectrum of graphene, that of the phosphorene nanostructure exhibits high absorbance in the ultraviolet region, which indicates a high light absorptivity. In a low-energy resonance zone, a spectral band extends to the entire near-infrared regions. When the impulse excitation polarizes in the armchair-edge direction, the low-energy plasmon in a few-layer phosphorene nanostructure shows an apparent long-range charge-transfer excitation but is significantly less pronounced along the zigzag-edge direction. The edge configuration significantly affects the absorption spectrum of monolayer phosphorene nanostructures. The armchair-edge and the zigzag-edge serve different functions in the absorption spectrum. Moreover, the absorption spectrum of the few-layer phosphorene nanostructure changes with the number of layers when the impulse excitation polarizes in the armchair-edge direction. In addition, the change in the low-energy resonance zone is significantly different from that in the high-energy resonance zone.

Keywords

phosphorene nanostructures 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. S. Novoselov, A. K. Geim, S. Morozov, D. Jiang, M. Katsnelson, I. Grigorieva, S. V. Dubonos, and A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene, Nature 438(7065), 197 (2005)CrossRefADSGoogle Scholar
  2. 2.
    Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Experimental observation of the quantum Hall effect and Berry’s phase in graphene, Nature 438(7065), 201 (2005)CrossRefADSGoogle Scholar
  3. 3.
    B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Single-layer MoS2 transistors, Nat. Nanotechnol. 6(3), 147 (2011)CrossRefADSGoogle Scholar
  4. 4.
    H. Fang, M. Tosun, G. Seol, T. C. Chang, K. Takei, and A. Javey, Degenerate n-doping of few-layer transition metal dichalcogenides by potassium, Nano Lett. 13(5), 1991 (2013)CrossRefADSGoogle Scholar
  5. 5.
    M. Jablan, H. Buljan, and M. Soljacic, Plasmonics in graphene at infrared frequencies, Phys. Rev. B 80(24), 245435 (2009)CrossRefADSGoogle Scholar
  6. 6.
    F. H. L. Koppens, D. E. Chang, and F. J. G. de Abajo, Graphene plasmonics: A platform for strong light–matter interactions, Nano Lett. 11(8), 3370 (2011)CrossRefGoogle Scholar
  7. 7.
    H. A. Atwater, The promise of plasmonics, Sci. Am. 296(4), 56 (2007)CrossRefGoogle Scholar
  8. 8.
    E. Ozbay, Plasmonics: Merging photonics and electronics at nanoscale dimensions, Science 311(5758), 189 (2006)CrossRefADSGoogle Scholar
  9. 9.
    A. Boltasseva and H. A. Atwater, Low-loss plasmonic metamaterials, Science 331(6015), 290 (2011)CrossRefADSGoogle Scholar
  10. 10.
    L. Liao, Y. C. Lin, M. Bao, R. Cheng, J. Bai, Y. Liu, Y. Qu, K. L. Wang, Y. Huang, and X. Duan, High-speed graphene transistors with a self-aligned nanowire gate, Nature 467(7313), 305 (2010)CrossRefADSGoogle Scholar
  11. 11.
    F. Schwierz, Graphene transistors, Nat. Nanotechnol. 5(7), 487 (2010)CrossRefADSGoogle Scholar
  12. 12.
    Y. Wu, Y. Lin, A. A. Bol, K. A. Jenkins, F. Xia, D. B. Farmer, Y. Zhu, and P. Avouris, High-frequency, scaled graphene transistors on diamond-like carbon, Nature 472(7341), 74 (2011)CrossRefADSGoogle Scholar
  13. 13.
    Y. L. Chen, X. B. Feng, and D. D. Hou, Optical absorptions in monolayer and bilayer grapheme, Acta Phys. Sin. 62(18), 187301 (2013)Google Scholar
  14. 14.
    K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Atomically thin MoS2: A new direct-gap semiconductor, Phys. Rev. Lett. 105(13), 136805 (2010)CrossRefADSGoogle Scholar
  15. 15.
    A. Splendiani, L. Sun, Y. B. Zhang, T. S. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, Emerging photoluminescence in monolayer MoS2, Nano Lett. 10(4), 1271 (2010)CrossRefADSGoogle Scholar
  16. 16.
    H. Liu and P. D. Ye, MoS2 dual-gate MOSFET with atomiclayer- deposited Al2O3 as top-gate dielectric, IEEE Electron Device Lett. 33(4), 546 (2012)CrossRefADSGoogle Scholar
  17. 17.
    H. Liu, A. T. Neal, and P. D. Ye, Channel length scaling of MoS2 MOSFETs, ACS Nano 6(10), 8563 (2012)CrossRefGoogle Scholar
  18. 18.
    Y. Yoon, K. Ganapathi, and S. Salahuddin, How good can monolayer MoS2 transistors be? Nano Lett. 11(9), 3768 (2011)CrossRefADSGoogle Scholar
  19. 19.
    B. Radisavljevic, M. B. Whitwick, and A. Kis, Integrated circuits and logic operations based on single-layer MoS2, ACS Nano 5(12), 9934 (2011)CrossRefGoogle Scholar
  20. 20.
    H. Wang, L. Yu, Y. H. Lee, Y. Shi, A. Hsu, M. L. Chin, L. J. Li, M. Dubey, J. Kong, and T. Palacios, Integrated circuits based on bilayer Mo2 transistors, Nano Lett. 12(9), 4674 (2012)CrossRefADSGoogle Scholar
  21. 21.
    E. S. Reich, Phosphorene excites materials scientists, Nature 506(7486), 19 (2014)CrossRefADSzbMATHGoogle Scholar
  22. 22.
    Y. Xu, B. Yan, H. J. Zhang, J. Wang, G. Xu, P. Tang, W. Duan, and S. C. Zhang, Large-gap quantum spin Hall insulators in tin films, Phys. Rev. Lett. 111(13), 136804 (2013)CrossRefADSGoogle Scholar
  23. 23.
    L. Li, Y. J. Yu, G. J. Ye, Q. Q. Ge, X. D. Ou, Hua Wu, D. L. Feng, X. H. Chen, and Y. Zhang, Black phosphorus field-effect transistors, Nat. Nanotechnol. 2014, 9(5), 372CrossRefADSGoogle Scholar
  24. 24.
    H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. F. Xu, D. Tomanek, and P. D. Ye, Phosphorene: An unexplored 2D semiconductor with a high hole mobility, ACS Nano 8(4), 4033 (2014)CrossRefGoogle Scholar
  25. 25.
    E. S. Reich, Phosphorene excites materials scientists, Nature 506(7486), 19 (2014)CrossRefADSGoogle Scholar
  26. 26.
    J. Dai and X. C. Zeng, Bilayer phosphorene: Effect of stacking order on bandgap and its potential applications in thinfilm solar cells, J. Phys. Chem. Lett. 5(7), 1289 (2014)CrossRefGoogle Scholar
  27. 27.
    M. Buscema, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. J. van der Zant, and A. Castellanos-Gomez, Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors, Nano Lett. 14(6), 3347 (2014)CrossRefADSGoogle Scholar
  28. 28.
    V. Tran and L. Yang, Scaling laws for the band gap and optical response of phosphorene nanoribbons, Phys. Rev. B 89(24), 245407 (2014)CrossRefADSGoogle Scholar
  29. 29.
    S. A. Fischer, B. F. Habenicht, A. B. Madrid, W. R. Duncan, and O. V. Prezhdo, Regarding the validity of the time-dependent Kohn–Sham approach for electron-nuclear dynamics via trajectory surface hopping, J. Chem. Phys. 134(2), 024102 (2011)CrossRefADSGoogle Scholar
  30. 30.
    M. A. L. Marques, A. Castro, G. F. Bertsch, and A. Rubio, Octopus: A first-principles tool for excited electron–ion dynamics, Comput. Phys. Commun. 151(1), 60 (2003)CrossRefADSGoogle Scholar
  31. 31.
    A. Rubio, J. A. Alonso, J. M. Lopez, and M. J. Stott, Surface plasmon excitations in C60, C60K and C60H clusters, Physica B 183(3), 247 (1993)CrossRefADSGoogle Scholar
  32. 32.
    A. G. Marinopoulos, L. Reining, V. Olevano, A. Rubio, T. Pichler, X. Liu, M. Knupfer, and J. Fink, Anisotropy and interplane interactions in the dielectric response of graphite, Phys. Rev. Lett. 89(7), 076402 (2002)CrossRefADSGoogle Scholar
  33. 33.
    A. G. Marinopoulos, L. Reining, A. Rubio, and N. Vast, Optical and loss spectra of carbon nanotubes: Depolarization effects and intertube interactions, Phys. Rev. Lett. 91(4), 046402 (2003)CrossRefADSGoogle Scholar
  34. 34.
    K. De Blauwe, D. J. Mowbray, Y. Miyata, P. Ayala, H. Shiozawa, A. Rubio, P. Hoffmann, H. Kataura, and T. Pichler, Combined experimental and ab initio study of the electronic structure of narrow-diameter single-wall carbon nanotubes with predominant (6,4),(6,5) chirality, Phys. Rev. B 82(12), 125444 (2010)CrossRefADSGoogle Scholar
  35. 35.
    K. Yabana and G. F. Bertsch, Time-dependent local-density approximation in real time, Phys. Rev. B 54(7), 4484 (1996)CrossRefADSGoogle Scholar
  36. 36.
    C. Jamorski, M. E. Casida, and D. R. Salahub, Dynamic polarizabilities and excitation spectra from a molecular implementation of time-dependent density-functional response theory: N2 as a case study, J. Chem. Phys. 104(13), 5134 (1996)CrossRefADSGoogle Scholar
  37. 37.
    J. O. Joswig, L. O. Tunturivuori, and R. M. Nieminenc, Photoabsorption in sodium clusters on the basis of time-dependent density-functional theory, J. Chem. Phys. 128(1), 014707 (2008)CrossRefADSGoogle Scholar
  38. 38.
    C. Hartwigsen, S. Goedecker, and J. Hutter, Relativistic separable dual-space Gaussian pseudopotentials from H to Rn, Phys. Rev. B 58(7), 3641 (1998)CrossRefADSGoogle Scholar
  39. 39.
    A. Rubio-Ponce, A. Conde-Gallardo, and D. Olguin, Firstprinciples study of anatase and rutile TiO2 doped with Eu ions: A comparison of GGA and LDA+U calculations, Phys. Rev. B 78(3), 0351071 (2008)CrossRefGoogle Scholar
  40. 40.
    A. Delin, L. Fast, B. Johansson, O. Eriksson, and J. M. Wills, Cohesive properties of the lanthanides: Effect of generalized gradient corrections and crystal structure, Phys. Rev. B 58(8), 4345 (1998)CrossRefADSGoogle Scholar
  41. 41.
    H. Yin and H. Zhang, Plasmons in graphene nanostructures, J. Appl. Phys. 111(10), 103502 (2012)CrossRefADSGoogle Scholar
  42. 42.
    J. Guan, Z. Zhu, and D. Tománek, Phase coexistence and metal-insulator transition in few-layer phosphorene: A computational study, Phys. Rev. Lett. 113, 046804 (2014)CrossRefADSGoogle Scholar
  43. 43.
    L. Yang, C. D. Spataru, S. G. Louie, and M. Y. Chou, Enhanced electron-hole interaction and optical absorption in a silicon nanowire, Phys. Rev. B 75(20), 201304 (2007) (R)CrossRefADSGoogle Scholar
  44. 44.
    M. Reischle, G. J. Beirne, R. Roßbach, M. Jetter, and P. Michler, Influence of the dark exciton state on the optical and quantum optical properties of single quantum dots, Phys. Rev. Lett. 101(14), 146402 (2008)CrossRefADSGoogle Scholar
  45. 45.
    V. Tran, R. Soklaski, Y. Liang, and L. Yang, Tunable band gap and anisotropic optical response in few-layer black phosphorus, arXiv: 1402.4192, 2014Google Scholar
  46. 46.
    J. Qiao, X. Kong, Z. X. Hu, F. Yang, and W. Ji, Highmobility transport anisotropy and linear dichroism in fewlayer black phosphorus, Nat. Commun. 5, 4475 (2014)ADSGoogle Scholar
  47. 47.
    N. Zeng, X.-Y. Jiang, Q. Gao, Y. He, and H. Ma, Linear polarization difference imaging and its potential applications, Appl. Opt. 48(35), 6734 (2009)CrossRefADSGoogle Scholar
  48. 48.
    E. Knill, R. Laflamme, and G. J. Milburn, A scheme for efficient quantum computation with linear optics, Nature 409(6816), 46 (2001)CrossRefADSGoogle Scholar
  49. 49.
    N. P. Dasgupta and P. Yang, Semiconductor nanowires for photovoltaic and photoelectrochemical energy conversion, Front. Phys. 9(3), 289 (2014)CrossRefGoogle Scholar
  50. 50.
    Y. L. Zhao, Y. L. Song, W. G. Song, W. Liang, X. Y. Jiang, Z. Y. Tang, H. X. Xu, Z. X. Wei, Y. Q. Liu, M. H. Liu, L. Jiang, X. H. Bao, L. J. Wan, and C. L. Bai, Progress of nanoscience in China, Front. Phys. 9(3), 257 (2014)CrossRefGoogle Scholar
  51. 51.
    N. Liu, W. Li, M. Pasta, and Y. Cui, Nanomaterials for electrochemical energy storage, Front. Phys. 9(3), 323 (2014)CrossRefGoogle Scholar
  52. 52.
    W.-J. Li, D.-X. Yao, and E. W. Carlson, Tunable nano Peltier cooling device from geometric effects using a single graphene nanoribbon, Front. Phys. 9(4), 472 (2014)CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.College of Physical Science and TechnologySichuan UniversityChengduChina
  2. 2.Key Laboratory of High Energy Density Physics and Technology of Ministry of EducationSichuan UniversityChengduChina

Personalised recommendations