Advertisement

Frontiers of Physics

, Volume 10, Issue 3, pp 287–302 | Cite as

Graphene versus MoS2: A short review

  • Jin-Wu JiangEmail author
Open Access
Review Article

Abstract

Graphene and MoS2 are two well-known quasi two-dimensional materials. This review presents a comparative survey of the complementary lattice dynamical and mechanical properties of graphene and MoS2, which facilitates the study of graphene/MoS2 heterostructures. These hybrid heterostructures are expected to mitigate the negative properties of each individual constituent and have attracted intense academic and industrial research interest.

Keywords

graphene molybdenum disulphide lattice dynamics mechanical properties 

References and Notes

  1. 1.
    A. K. Geim and K. S. Novoselov, The rise of graphene, Nat. Mater. 6(3), 183 (2007)ADSGoogle Scholar
  2. 2.
    A. H. C. Neto and K. Novoselov, New directions in science and technology: Two-dimensional crystals, Rep. Prog. Phys. 74(8), 082501 (2011)ADSGoogle Scholar
  3. 3.
    C. Lee, X. Wei, J. W. Kysar, and J. Hone, Measurement of the elastic properties and intrinsic strength of mono-layer graphene, Science 321(5887), 385 (2008)ADSGoogle Scholar
  4. 4.
    R. C. Cooper, C. Lee, C. A. Marianetti, X. Wei, J. Hone, and J. W. Kysar, Nonlinear elastic behavior of two-dimensional molybdenum disulfide, Phys. Rev. B 87(3), 035423 (2013)ADSGoogle Scholar
  5. 5.
    Z. C. Ouyang, Z. B. Su, and C. L. Wang, Coil formation in multishell carbon nanotubes: Competition between curvature elasticity and interlayer adhesion, Phys. Rev. Lett. 78(21), 4055 (1997)ADSGoogle Scholar
  6. 6.
    Z. C. Tu and Z. C. Ou-Yang, Single-walled and multiwalled carbon nanotubes viewed as elastic tubes with the effective Young’s moduli dependent on layer number, Phys. Rev. B 65(23), 233407 (2002)ADSGoogle Scholar
  7. 7.
    M. Arroyo and T. Belytschko, An atomistic-based nite deformation membrane for single layer crystalline films, J. Mech. Phys. Solids 50(9), 1941 (2002)zbMATHMathSciNetADSGoogle Scholar
  8. 8.
    Q. Lu, M. Arroyo, and R. Huang, Elastic bending modulus of monolayer graphene, J. Phys. D: Appl. Phys. 42(10), 102002 (2009)ADSGoogle Scholar
  9. 9.
    J. W. Jiang, Z. Qi, H. S. Park, and T. Rabczuk, Elastic bending modulus of single-layer molybdenum disul-phide (MoS2): Finite thickness effect, Nanotechnology 24(43), 435705 (2013)ADSGoogle Scholar
  10. 10.
    J. W. Jiang and H. S. Park, Negative Poisson’s ratio in single-layer black phosphorus, Nat. Commun. 5, 4727 (2014)ADSGoogle Scholar
  11. 11.
    A. C. Ferrari, Raman spectroscopy of graphene and graphite:Disorder, electron-phonon coupling, doping and nonadiabatic effects, Solid State Commun. 143(1–2), 47 (2007)ADSGoogle Scholar
  12. 12.
    A. H. Castro Neto, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, The electronic properties of graphene, Rev. Mod. Phys. 81(1), 109 (2009)ADSGoogle Scholar
  13. 13.
    A. K. Geim, Graphene: Status and prospects, Science 324(5934), 1530 (2009)ADSGoogle Scholar
  14. 14.
    L. M. Malard, M. A. Pimenta, G. Dresselhaus, and M. S. Dressel-haus, Raman spectroscopy in graphene, Physics Reports 473, 51 (2009)ADSGoogle Scholar
  15. 15.
    C. N. R. Rao, A. K. Sood, K. S. Subrahmanyam, and A. Govin-daraj, Graphene: The new two-dimensional nanomaterial, Angew. Chem. Int. Ed. 48(42), 7752 (2009)Google Scholar
  16. 16.
    M. J. Allen, V. C. Tung, and R. B. Kaner, Honeycomb carbon: A review of graphene, Chem. Rev. 110(1), 132 (2010)Google Scholar
  17. 17.
    F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, Graphene photonics and optoelectronics, Nat. Photonics 4(9), 611 (2010)ADSGoogle Scholar
  18. 18.
    F. Schwierz, Graphene transistors, Nat. Nanotechnol. 5(7), 487 (2010)ADSGoogle Scholar
  19. 19.
    A. A. Balandin, Thermal properties of graphene and nanostructured carbon materials, Nat. Mater. 10(8), 569 (2011)ADSGoogle Scholar
  20. 20.
    Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nat. Nanotechnol. 7(11), 699 (2012)ADSGoogle Scholar
  21. 21.
    M. Chhowalla, H. S. Shin, G. Eda, L. Li, K. P. Loh, and H. Zhang, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets, Nat. Chem. 5(4), 263 (2013)Google Scholar
  22. 22.
    M. Xu, T. Liang, M. Shi, and H. Chen, Graphene-like twodimensional materials, Chem. Rev. 113(5), 3766 (2013)Google Scholar
  23. 23.
    S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, Progress, challenges, and opportunities in two-dimensional materials beyond graphene, ACS Nano 7(4), 2898 (2013)Google Scholar
  24. 24.
    X. Huang, Z. Zeng, and H. Zhang, Metal dichalcogenide nanosheets: Preparation, properties and applications, Chem. Soc. Rev. 42(5), 1934 (2013)Google Scholar
  25. 25.
    L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y.J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. C. Neto, and K. S. Novoselov, Strong light-matter interactions in heterostructures of atomically thin films, Science 340(6138), 1311 (2013)ADSGoogle Scholar
  26. 26.
    R. Zan, Q. M. Ramasse, R. Jalil, T. Georgiou, U. Bangert, and K. S. Novoselov, Control of radiation damage in MoS2 by graphene encapsulation, ACS Nano 7(11), 10167 (2013)Google Scholar
  27. 27.
    R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical Properties of Carbon Nanotubes, London: Imperial College, 1998Google Scholar
  28. 28.
    J. W. Jiang, H. S. Park, and T. Rabczuk, Molecular dynamics simulations of single-layer molybdenum disulphide (MoS2): Stillinger-Weber parametrization, mechanical properties, and thermal conductivity, J. Appl. Phys. 114(6), 064307 (2013)ADSGoogle Scholar
  29. 29.
    A. Molina-Sánchez and L. Wirtz, Phonons in single-layer and few-layer MoS2 and WS2, Phys. Rev. B 84(15), 155413 (2011)ADSGoogle Scholar
  30. 30.
    N. Wakabayashi, H. G. Smith, and R. M. Nicklow, Lattice dynamics of hexagonal MoS2 studied by neutron scattering, Phys. Rev. B 12(2), 659 (1975)ADSGoogle Scholar
  31. 31.
    G. Kresse and J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)ADSGoogle Scholar
  32. 32.
    J. M. Soler, E. Artacho, J. D. Gale, A. Garcia, J. Jun-quera, P. Ordejon, and D. Sánchez-Portal, The siesta method for ab initio ordern materials simulation, J. Phys.: Condens. Matter 14(11), 2745 (2002) (Code available from http://www.icmab.es/dmmis/leem/siesta/.)ADSGoogle Scholar
  33. 33.
    D. W. Brenner, O. A. Shenderova, J. A. Harrison, S. J. Stuart, B. Ni, and S. B. Sinnott, A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons, J. Phys.: Condens. Matter 14(4), 783 (2002)ADSGoogle Scholar
  34. 34.
    J. Tersoff, Empirical interatomic potential for carbon, with applications to amorphous carbon, Phys. Rev. Lett. 61(25), 2879 (1988)ADSGoogle Scholar
  35. 35.
    F. H. Stillinger and T. A. Weber, Computer simulation of local order in condensed phases of silicon, Phys. Rev. B 31(8), 5262 (1985)ADSGoogle Scholar
  36. 36.
    F. F. Abraham and I. P. Batra, Theoretical interpretation of atomic force microscope images of graphite, Surf. Sci. 209(1–2), L125 (1989)ADSGoogle Scholar
  37. 37.
    T. Aizawa, R. Souda, S. Otani, Y. Ishizawa, and C. Oshima, Bond softening in monolayer graphite formed on transitionmetal carbide surfaces, Phys. Rev. B 42(18), 11469 (1990)ADSGoogle Scholar
  38. 38.
    T. Liang, S. R. Phillpot, and S. B. Sinnott, Parametrization of a reactive many-body potential for Mo-S systems, Phys. Rev. B 79(24), 245110 (2009)ADSGoogle Scholar
  39. 39.
    J. A. Stewart and D. E. Spearot, Atomistic simulations of nanoindentation on the basal plane of crystalline molybdenum disulfide (MoS2), Model. Simul. Mater. Sci. Eng. 21(4), 045003 (2013)ADSGoogle Scholar
  40. 40.
    J. D. Gale, Gulp: A computer program for the symmetryadapted simulation of solids, J. Chem. Soc., Faraday Trans. 93(4), 629 (1997) (Code available from https://projects.ivec.org/gulp/.)Google Scholar
  41. 41.
  42. 42.
    S. Jiménez Sandoval, D. Yang, R. F. Frindt, and J. C. Irwin, Raman study and lattice dynamics of single molecular layers of MoS2, Phys. Rev. B 44(8), 3955 (1991)ADSGoogle Scholar
  43. 43.
    E. Dobardžić, I. Milosevic, B. Dakic, and M. Damnjanovic,, Raman and infrared-active modes in MS2 nanotubes (M=Mo,W), Phys. Rev. B 74(3), 033403 (2006)ADSGoogle Scholar
  44. 44.
    M. Damnjanovic, E. Dobardzic, I. Miloeevic, M. Virsek, and M. Remskar, Phonons in MoS2 and WS2 nanotubes, Mater. Manuf. Process. 23(6), 579 (2008)Google Scholar
  45. 45.
    H. Wang, Y. Wang, X. Cao, M. Feng, and G. Lan, Vibrational properties of graphene and graphene layers, Journal of Raman Spectroscopy 40(12), 1791 (2009)ADSGoogle Scholar
  46. 46.
    X. Zhang, W. Han, J. Wu, S. Milana, Y. Lu, Q. Li, A. Ferrari, and P. Tan, Raman spectroscopy of shear and layer breathing modes in multilayer MoS2, Phys. Rev. B 87, 115413 (2013)ADSGoogle Scholar
  47. 47.
    J. W. Jiang, H. S. Park, and T. Rabczuk, MoS2 nanoresonators: Intrinsically better than graphene? Nanoscale 6(7), 3618 (2014)ADSGoogle Scholar
  48. 48.
    F. Liu, P. Ming, and J. Li, Ab initio calculation of ideal strength and phonon instability of graphene under tension, Phys. Rev. B 76(6), 064120 (2007)ADSGoogle Scholar
  49. 49.
    F. Hao, D. Fang, and Z. Xu, Mechanical and thermal transport properties of graphene with defects, Appl. Phys. Lett. 99(4), 041901 (2011)ADSGoogle Scholar
  50. 50.
    Z. Ni, H. Bu, M. Zou, H. Yi, K. Bi, and Y. Chen, Anisotropic mechanical properties of graphene sheets from molecular dynamics, Physica B 405(5), 1301 (2010)ADSGoogle Scholar
  51. 51.
    Y. Gao and P. Hao, Mechanical properties of mono-layer graphene under tensile and compressive loading, Physica E 41(8), 1561 (2009)ADSGoogle Scholar
  52. 52.
    Y. Guo, L. Jiang, and W. Guo, Opening carbon nanotubes into zigzag graphene nanoribbons by energy-optimum oxidation, Phys. Rev. B 82(11), 115440 (2010)ADSGoogle Scholar
  53. 53.
    Y. Zheng, N. Wei, Z. Fan, L. Xu, and Z. Huang, Mechanical properties of grafold: A demonstration of strengthened graphene, Nanotechnology 22(40), 405701 (2011)Google Scholar
  54. 54.
    Y. Wei, J. Wu, H. Yin, X. Shi, R. Yang, and M. Dresselhaus, The nature of strength enhancement and weakening by pentagonheptagon defects in graphene, Nat. Mater. 11(9), 759 (2012)ADSGoogle Scholar
  55. 55.
    Y. Zhang and C. Pan, Measurements of mechanical properties and number of layers of graphene from nano-indentation, Diamond Related Materials 24, 1 (2012)ADSGoogle Scholar
  56. 56.
    Q. Yue, J. Kang, Z. Shao, X. Zhang, S. Chang, G. Wang, S. Qin, and J. Li, Mechanical and electronic properties of monolayer MoS2 under elastic strain, Phys. Lett. A 376(12–13), 1166 (2012)ADSGoogle Scholar
  57. 57.
    Y. Huang, J. Wu, and K. C. Hwang, Thickness of graphene and single-wall carbon nanotubes, Phys. Rev. B 74(24), 245413 (2006)ADSGoogle Scholar
  58. 58.
    L. Shen, H. S. Shen, and C. L. Zhang, Temperature-dependent elastic properties of single layer graphene sheets, Mater. Des. 31(9), 4445 (2010)Google Scholar
  59. 59.
    T. Han, P. He, Y. Luo, and X. Zhang, Research progress in the mechanical properties of graphene, Advances in Mechanics 41(3), 279 (2011)Google Scholar
  60. 60.
    L. Xu, N. Wei, Y. Zheng, Z. Fan, H. Q. Wang, and J. C. Zheng, Graphene-nanotube 3d networks: Intriguing thermal and mechanical properties, J. Mater. Chem. 22(4), 1435 (2011)Google Scholar
  61. 61.
    J. W. Jiang, J. S. Wang, and B. Li, Elastic and nonlinear stiffness of graphene: A simple approach, Phys. Rev. B 81(7), 073405 (2010)ADSGoogle Scholar
  62. 62.
    S. Bertolazzi, J. Brivio, and A. Kis, Stretching and breaking of ultrathin MoS2, ACS Nano 5(12), 9703 (2011)Google Scholar
  63. 63.
    R. C. Cooper, C. Lee, C. A. Marianetti, X. Wei, J. Hone, and J. W. Kysar, Erratum: Nonlinear elastic behavior of two-dimensional molybdenum disulfide [Phys. Rev. B 87, 035423 (2013)], Phys. Rev. B 87(7), 079901 (2013)ADSGoogle Scholar
  64. 64.
    K. Liu, Q. Yan, M. Chen, W. Fan, Y. Sun, J. Suh, D. Y. Fu, S. Lee, J. Zhou, S. Tongay, J. Ji, J. B. Neaton, and J. Q. Wu, Elastic properties of chemical-vapor-deposited monolayer MoS2, WS2, and their bilayer heterostructures arXiv: 1407.2669 (2014)Google Scholar
  65. 65.
    A. Castellanos-Gomez, M. Poot, G. A. Steele, H. S. J. van der Zant, N. Agrait, and G. Rubio-Bollinger, Elastic properties of freely suspended MoS2 nano sheets, Adv. Mater. 24(6), 772 (2012)Google Scholar
  66. 66.
    E. Cadelano, P. L. Palla, S. Giordano, and L. Colombo, Nonlinear elasticity of monolayer graphene, Phys. Rev. Lett. 102(23), 235502 (2009)ADSGoogle Scholar
  67. 67.
    C. D. Reddy, S. Rajendran, and K. M. Liew, Equilibrium configuration and continuum elastic properties of finite sized graphene, Nanotechnology 17(3), 864 (2006)ADSGoogle Scholar
  68. 68.
    H. Zhao, K. Min, and N. R. Aluru, Size and chirality dependent elastic properties of graphene nanoribbons under uniaxial tension, Nano Lett. 9(8), 3012 (2009)ADSGoogle Scholar
  69. 69.
    P. Tao, H. Guo, T. Yang, and Z. Zhang, Strain-induced magnetism in MoS2 monolayer with defects, J. Appl. Phys. 115(5), 054305 (2014)ADSGoogle Scholar
  70. 70.
    Y. C. Lin, D. O. Dumcenco, Y. S. Huang, and K. Suenaga, Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2, Nat. Nanotechnol. 9(5), 391 (2014)ADSGoogle Scholar
  71. 71.
    J. W. Jiang, Phonon bandgap engineering of strained monolayer MoS2, Nanoscale 6(14), 8326 (2014)ADSGoogle Scholar
  72. 72.
    M. Kan, J. Y. Wang, X. W. Li, S. H. Zhang, Y. W. Li, Y. Kawazoe, Q. Sun, and P. Jena, Structures and phase transition of a MoS2 monolayer, J. Phys. Chem. C 118(3), 1515 (2014)Google Scholar
  73. 73.
    K. Q. Dang, J. P. Simpson, and D. E. Spearot, Phase transformation in monolayer molybdenum disulphide (MoS2) under tension predicted by molecular dynamics simulations, Scr. Mater. 76, 41 (2014)Google Scholar
  74. 74.
    Y. Wei, B. Wang, J. Wu, R. Yang, and M. L. Dunn, Bending rigidity and gaussian bending stiffness of single-layered graphene, Nano Lett. 13(1), 26 (2013)ADSGoogle Scholar
  75. 75.
    X. Zhou, J. J. Zhou, and Z. C. Ou-Yang, Strain energy and Young’s modulus of single-wall carbon nanotubes calculated from electronic energy-band theory, Phys. Rev. B 62(20), 13692 (2000)ADSGoogle Scholar
  76. 76.
    T. Ma, B. Li, and T. Chang, Chirality- and curvature-dependent bending stiffness of single layer graphene, Appl. Phys. Lett. 99(20), 201901 (2011)ADSGoogle Scholar
  77. 77.
    Y. Shen and H. Wu, Interlayer shear effect on multilayer graphene subjected to bending, Appl. Phys. Lett. 100(10), 101909 (2012)ADSGoogle Scholar
  78. 78.
    X. Shi, B. Peng, N. M. Pugno, and H. Gao, Stretch-induced softening of bending rigidity in graphene, Appl. Phys. Lett. 100(19), 191913 (2012)ADSGoogle Scholar
  79. 79.
    M. Arroyo and T. Belytschko, Finite crystal elasticity of carbon nanotubes based on the exponential cauchy-born rule, Phys. Rev. B 69(11), 115415 (2004)ADSGoogle Scholar
  80. 80.
    Y. Wang, R. Yang, Z. Shi, L. Zhang, D. Shi, E. Wang, and G. Zhang, Super-elastic graphene ripples for flexible strain sensors, ACS Nano 5(5), 3645 (2011)Google Scholar
  81. 81.
    J. Zhang, J. Xiao, X. Meng, C. Monroe, Y. Huang, and J. M. Zuo, Free folding of suspended graphene sheets by random mechanical stimulation, Phys. Rev. Lett. 104(16), 166805 (2010)ADSGoogle Scholar
  82. 82.
    J. X. Shi, Q. Q. Ni, X. W. Lei, and T. Natsuki, Nonlocal elasticity theory for the buckling of double-layer graphene nanoribbons based on a continuum model, Comput. Mater. Sci. 50(11), 3085 (2011)Google Scholar
  83. 83.
    C. Wang, L. Lan, and H. Tan, The physics of wrinkling in graphene membranes under local tension, Phys. Chem. Chem. Phys. 15(8), 2764 (2013)Google Scholar
  84. 84.
    S. Timoshenko and S. Woinowsky-Krieger, Theory of Plates and Shells, 2nd Ed., New York: McGraw-Hill, 1987Google Scholar
  85. 85.
    J. W. Jiang, The buckling of single-layer MoS2 under uniaxial compression, Nanotechnology 25(35), 355402 (2014)Google Scholar
  86. 86.
    M. Zhou, Y. Zhai, and S. Dong, Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide, Anal. Chem. 81(14), 5603 (2009)Google Scholar
  87. 87.
    Y. Xu, C. Chen, V. V. Deshpande, F. A. DiRenno, A. Gondarenko, D. B. Heinz, S. Liu, P. Kim, and J. Hone, Radio frequency electrical transduction of graphene mechanical resonators, Appl. Phys. Lett. 97(24), 243111 (2010)ADSGoogle Scholar
  88. 88.
    X. Q. He, S. Kitipornchai, and K. M. Liew, Resonance analysis of multi-layered graphene sheets used as nanoscale resonators, Nanotechnology 16(10), 2086 (2005)ADSGoogle Scholar
  89. 89.
    Y. Liu, Z. Xu, and Q. Zheng, The interlayer shear effect on graphene multilayer resonators, J. Mech. Phys. Solids 59(8), 1613 (2011)zbMATHMathSciNetADSGoogle Scholar
  90. 90.
    J. Wang, X. He, S. Kitipornchai, and H. Zhang, Geometrical nonlinear free vibration of multi-layered graphene sheets, J. Phys. D: Appl. Phys. 44(13), 135401 (2011)ADSGoogle Scholar
  91. 91.
    Y. Xu, S. Yan, Z. Jin, and Y. Wang, Quantum-squeezing effects of strained multilayer graphene nems, Nanoscale Res. Lett. 6(1), 355 (2011)ADSGoogle Scholar
  92. 92.
    F. Gu, J. H. Zhang, L. J. Yang, and B. Gu, Molecular dynamics simulation of resonance properties of strain graphene nanoribbons, Acta Phys. Sin. 60(5), 056103 (2011)Google Scholar
  93. 93.
    Z. B. Shen, H. L. Tang, D. K. Li, and G. J. Tang, Vibration of single-layered graphene sheet-based nanomechanical sensor via nonlocal Kirchhoff plate theory, Comput. Mater. Sci. 61, 200 (2012)Google Scholar
  94. 94.
    S. M. Zhou, L. P. Sheng, and Z. B. Shen, Transverse vibration of circular graphene sheet-based mass sensor via nonlocal Kirchhoff plate theory, Comput. Mater. Sci. 86, 73 (2014)Google Scholar
  95. 95.
    K. L. Ekinci and M. L. Roukes, Nanoelectromechanical systems, Rev. Sci. Instrum. 76(6), 061101 (2005)ADSGoogle Scholar
  96. 96.
    A. M. Zande, R. A. Barton, J. S. Alden, C. S. Ruiz-Vargas, W. S. Whitney, P. H. Q. Pham, J. Park, J. M. Parpia, H. G. Craighead, and P. L. McEuen, Large-scale arrays of singlelayer graphene resonators, Nano Lett. 10(12), 4869 (2010)ADSGoogle Scholar
  97. 97.
    C. Chen, S. Rosenblatt, K. I. Bolotin, W. Kalb, P. Kim, I. Kymissis, H. L. Stormer, T. F. Heinz, and J. Hone, Performance of monolayer graphene nanomechanical resonators with electrical read-out, Nat. Nanotechnol. 4(12), 861 (2009)ADSGoogle Scholar
  98. 98.
    J. W. Jiang, B. S. Wang, H. S. Park, and T. Rabczuk, Adsorbate migration effects on continuous and discontinuous temperature-dependent transitions in the quality factors of graphene nanoresonators, Nanotechnology 25(2), 025501 (2014)ADSGoogle Scholar
  99. 99.
    C. Edblom and A. Isacsson, Diffusion-induced dissipation and mode coupling in nanomechanical resonators arXiv: 1406.1365v1 (2014)Google Scholar
  100. 100.
    A. Eichler, J. Moser, J. Chaste, M. Zdrojek, I. Wilson-Rae, and A. Bachtold, Nonlinear damping in mechanical resonators made from carbon nanotubes and graphene, Nat. Nanotechnol. 6(6), 339 (2011)ADSGoogle Scholar
  101. 101.
    A. Castellanos-Gomez, R. van Leeuwen, M. Buscema, H. S. J. van der Zant, G. A. Steele, and W. J. Venstra, Singlelayer MoS2 mechanical resonators, Adv. Mater. 25(46), 6719 (2013)Google Scholar
  102. 102.
    J. Lee, Z. Wang, K. He, J. Shan, and P. X. L. Feng, High frequency MoS2 nanomechanical resonators, ACS Nano 7(7), 6086 (2013)Google Scholar
  103. 103.
    A. A. Balandin, Low-frequency 1/f noise in graphene devices, Nat. Nanotechnol. 8(8), 549 (2013)ADSGoogle Scholar
  104. 104.
    Y. M. Lin and P. Avouris, Strong suppression of electrical noise in bilayer graphene nanodevices, Nano Lett. 8(8), 2119 (2008)ADSGoogle Scholar
  105. 105.
    A. N. Pal and A. Ghosh, Resistance noise in electrically biased bilayer graphene, Phys. Rev. Lett. 102(12), 126805 (2009)ADSGoogle Scholar
  106. 106.
    Z. Cheng, Q. Li, Z. Li, Q. Zhou, and Y. Fang, Suspended graphene sensors with improved signal and reduced noise, Nano Lett. 10(5), 1864 (2010)ADSGoogle Scholar
  107. 107.
    S. Rumyantsev, G. Liu, W. Stillman, M. Shur, and A. A. Balandin, Electrical and noise characteristics of graphene fieldeffect transistors: Ambient effects, noise sources and physical mechanisms, J. Phys.: Condens. Matter 22(39), 395302 (2010)Google Scholar
  108. 108.
    G. Liu, S. Rumyantsev, M. Shur, and A. A. Balandin, Graphene thickness-graded transistors with reduced electronic noise, Appl. Phys. Lett. 100(3), 033103 (2012)ADSGoogle Scholar
  109. 109.
    M. Z. Hossain, S. L. Roumiantsev, M. Shur, and A. A. Balandin, Reduction of 1/f noise in graphene after electronbeam irradiation, Appl. Phys. Lett. 102(15), 153512 (2013)ADSGoogle Scholar
  110. 110.
    K. Saito, J. Nakamura, and A. Natori, Ballistic thermal conductance of a graphene sheet, Phys. Rev. B 76(11), 115409 (2007)ADSGoogle Scholar
  111. 111.
    S. Yien, V. Tayari, J. O. Island, J. M. Porter, and A. R. Champagne, Electronic thermal conductivity measurements in intrinsic graphene, Phys. Rev. B 87(24), 241411 (2013)ADSGoogle Scholar
  112. 112.
    J. S. Wang, J. Wang, and J. T. Lü, Quantum thermal transport in nanostructures, Eur. Phys. J. B 62(4), 381 (2008)ADSGoogle Scholar
  113. 113.
    J. S. Wang, B. K. Agarwalla, H. Li, and J. Thingna, Nonequilibrium greens function method for quantum thermal transport, Front. Phys. 9(6), 673 (2013)Google Scholar
  114. 114.
    S. Chen, Q. Wu, C. Mishra, J. Kang, H. Zhang, K. Cho, W. Cai, A. A. Balandin, and R. S. Ruoff, Thermal conductivity of isotopically modified graphene, Nat. Mater. 11(3), 203 (2012)ADSGoogle Scholar
  115. 115.
    Z. Guo, D. Zhang, and X. G. Gong, Thermal conductivity of graphene nanoribbons, Appl. Phys. Lett. 95(16), 163103 (2009)ADSGoogle Scholar
  116. 116.
    Y. Xu, X. Chen, B. L. Gu, and W. Duan, Intrinsic anisotropy of thermal conductance in graphene nanoribbons, Appl. Phys. Lett. 95(23), 233116 (2009)ADSGoogle Scholar
  117. 117.
    S. Chen, A. L. Moore, W. Cai, J. W. Suk, J. An, C. Mishra, C. Amos, C. W. Magnuson, J. Kang, L. Shi, and R. S. Ruoff, Raman measurements of thermal transport in suspended monolayer graphene of variable sizes in vacuum and gaseous environments, ACS Nano 5(1), 321 (2011)Google Scholar
  118. 118.
    N. Wei, L. Xu, H. Q. Wang, and J. C. Zheng, Strain engineering of thermal conductivity in graphene sheets and nanoribbons: A demonstration of magic flexibility, Nanotechnology 22(10), 105705 (2011)ADSGoogle Scholar
  119. 119.
    Z. Wei, Z. Ni, K. Bi, M. Chen, and Y. Chen, In-plane lattice thermal conductivities of multilayer graphene films, Carbon 49(8), 2653 (2011)Google Scholar
  120. 120.
    Z. X. Xie, K. Q. Chen, and W. Duan, Thermal transport by phonons in zigzag graphene nanoribbons with structural defects, J. Phys.: Condens. Matter 23(31), 315302 (2011)ADSGoogle Scholar
  121. 121.
    X. Zhai and G. Jin, Stretching-enhanced ballistic thermal conductance in graphene nanoribbons, Europhys. Lett. 96(1), 16002 (2011)ADSGoogle Scholar
  122. 122.
    X. F. Peng, X. J. Wang, Z. Q. Gong, and K. Q. Chen, Ballistic thermal conductance in graphene nanoribbon with double-cavity structure, Appl. Phys. Lett. 99(23), 233105 (2011)ADSGoogle Scholar
  123. 123.
    F. Ma, H. B. Zheng, Y. J. Sun, D. Yang, K. W. Xu, and P. K. Chu, Strain effect on lattice vibration, heat capacity, and thermal conductivity of graphene, Appl. Phys. Lett. 101(11), 111904 (2012)ADSGoogle Scholar
  124. 124.
    Z. X. Guo, J. W. Ding, and X. G. Gong, Substrate effects on the thermal conductivity of epitaxial graphene nanoribbons, Phys. Rev. B 85(23), 235429 (2012)ADSGoogle Scholar
  125. 125.
    N. Mingo and D. A. Broido, Carbon nanotube ballistic thermal conductance and its limits, Phys. Rev. Lett. 95(9), 096105 (2005)ADSGoogle Scholar
  126. 126.
    N. Mingo and D. A. Broido, Length dependence of carbon nanotube thermal conductivity and the “problem of long waves”, Nano Lett. 5(7), 1221 (2005)ADSGoogle Scholar
  127. 127.
    D. L. Nika, E. P. Pokatilov, A. S. Askerov, and A. A. Balandin, Phonon thermal conduction in graphene: Role of umklapp and edge roughness scattering, Phys. Rev. B 79(15), 155413 (2009)ADSGoogle Scholar
  128. 128.
    D. L. Nika, A. S. Askerov, and A. A. Balandin, Anomalous size dependence of the thermal conductivity of graphene ribbons, Nano Lett. 12(6), 3238 (2012)Google Scholar
  129. 129.
    X. Xu, L. F. Pereira, Y. Wang, J. Wu, K. Zhang, X. Zhao, S. Bae, C. Tinh Bui, R. Xie, J. T. L. Thong, B. H. Hong, K. P. Loh, D. Donadio, B. Li, and B. Özyilmaz, Lengthdependent thermal conductivity in suspended single-layer graphene, Nat. Commun. 5, 3689 (2014)ADSGoogle Scholar
  130. 130.
    D. L. Nika, E. P. Pokatilov, and A. A. Balandin, Theoretical description of thermal transport in graphene: The issues of phonon cut-off frequencies and polarization branches, Phys. Status Solidi B 248(11), 2609 (2011)ADSGoogle Scholar
  131. 131.
    J. Wang, X. M. Wang, Y. F. Chen, and J. S. Wang, Dimensional crossover of thermal conductance in graphene nanoribbons: A first-principles approach, J. Phys.: Condens. Matter 24(29), 295403 (2012)Google Scholar
  132. 132.
    D. L. Nika and A. A. Balandin, Two-dimensional phonon transport in graphene, J. Phys.: Condens. Matter 24(23), 233203 (2012)ADSGoogle Scholar
  133. 133.
    N. Li, J. Ren, L. Wang, G. Zhang, P. Hänggi, and B. Li, Phononics: Manipulating heat flow with electronic analogs and beyond, Rev. Mod. Phys. 84(3), 1045 (2012)ADSGoogle Scholar
  134. 134.
    J. W. Jiang, J. Lan, J. S. Wang, and B. Li, Iso-topic effects on the thermal conductivity of graphene nanoribbons: Localization mechanism, J. Appl. Phys. 107(5), 054314 (2010)ADSGoogle Scholar
  135. 135.
    W. Cai, A. L. Moore, Y. Zhu, X. Li, S. Chen, L. Shi, and R. S. Ruoff, Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition, Nano Lett. 10(5), 1645 (2010)ADSGoogle Scholar
  136. 136.
    A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, Superior thermal conductivity of single-layer graphene, Nano Lett. 8(3), 902 (2008)ADSGoogle Scholar
  137. 137.
    S. Ghosh, I. Calizo, D. Teweldebrhan, E. P. Pokatilov, D. L. Nika, A. A. Balandin, W. Bao, F. Miao, and C. N. Lau, Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits, Appl. Phys. Lett. 92(15), 151911 (2008)ADSGoogle Scholar
  138. 138.
    L. Lindsay, D. A. Broido, and N. Mingo, Flexural phonons and thermal transport in multilayer graphene and graphite, Phys. Rev. B 83(23), 235428 (2011)ADSGoogle Scholar
  139. 139.
    Z. Aksamija and I. Knezevic, Lattice thermal conductivity of graphene nanoribbons: Anisotropy and edge roughness scattering, Appl. Phys. Lett. 98(14), 141919 (2011)ADSGoogle Scholar
  140. 140.
    L. Chen and S. Kumar, Thermal transport in graphene supported on copper, J. Appl. Phys. 112(4), 043502 (2012)ADSGoogle Scholar
  141. 141.
    Z. Wei, J. Yang, K. Bi, and Y. Chen, Mode dependent lattice thermal conductivity of single layer graphene, J. Appl. Phys. 116(15), 153503 (2014)ADSGoogle Scholar
  142. 142.
    S. Ghosh, W. Bao, D. L. Nika, S. Subrina, E. P. Pokatilov, C. N. Lau, and A. A. Balandin, Dimensional crossover of thermal transport in few-layer graphene, Nat. Mater. 9(7), 555 (2010)ADSGoogle Scholar
  143. 143.
    D. Singh, J. Y. Murthy, and T. S. Fisher, Mechanism of thermal conductivity reduction in few-layer graphene, J. Appl. Phys. 110(4), 044317 (2011)ADSGoogle Scholar
  144. 144.
    G. Zhang and H. Zhang, Thermal conduction and rectification in few-layer graphene y junctions, Nanoscale 3(11), 4604 (2011)ADSGoogle Scholar
  145. 145.
    W.R. Zhong, M.P. Zhang, B.Q. Ai, and D.Q. Zheng, Chirality and thickness-dependent thermal conductivity of fewlayer graphene: A molecular dynamics study, Appl. Phys. Lett. 98(11), 113107 (2011)ADSGoogle Scholar
  146. 146.
    W. R. Zhong, W. H. Huang, X. R. Deng, and B. Q. Ai, Thermal rectification in thickness-asymmetric graphene nanoribbons, Appl. Phys. Lett. 99(19), 193104 (2011)ADSGoogle Scholar
  147. 147.
    A. Rajabpour and S. M. Vaez Allaei, Tuning thermal conductivity of bilayer graphene by inter-layer sp3 bonding: A molecular dynamics study, Appl. Phys. Lett. 101(5), 053115 (2012)ADSGoogle Scholar
  148. 148.
    H. Y. Cao, Z. X. Guo, H. Xiang, and X. G. Gong, Layer and size dependence of thermal conductivity in multilayer graphene nanoribbons, Phys. Lett. A 376(4), 525 (2012)ADSGoogle Scholar
  149. 149.
    T. Sun, J. Wang, and W. Kang, Van der waals interactiontuned heat transfer in nanostructures, Nanoscale 5(1), 128 (2012)ADSGoogle Scholar
  150. 150.
    S. Sahoo, A. P. S. Gaur, M. Ahmadi, M. J. F. Guinel, and R. S. Katiyar, Temperature dependent raman studies and thermal conductivity of few layer MoS2, J. Phys. Chem. C 117(17), 9042 (2013)Google Scholar
  151. 151.
    V. Varshney, S. S. Patnaik, C. Muratore, A. K. Roy, A. A. Voevodin, and B. L. Farmer, Md simulations of molybdenum disulphide (MoS2): Force-field parameterization and thermal transport behavior, Comput. Mater. Sci. 48(1), 101 (2010)Google Scholar
  152. 152.
    W. Huang, H. Da, and G. Liang, Thermoelectric performance of MX2 (M=Mo, W; X=S, Se) monolayers, J. Appl. Phys. 113(10), 104304 (2013)ADSGoogle Scholar
  153. 153.
    J. W. Jiang, X. Y. Zhuang, and T. Rabczuk, Orientation dependent thermal conductance in single-layer MoS2, Scientific Reports 3, 2209 (2013)ADSGoogle Scholar
  154. 154.
    J. W. Jiang, J. S. Wang, and B. Li, Thermal conductance of graphene and dimerite, Phys. Rev. B 79(20), 205418 (2009)ADSGoogle Scholar
  155. 155.
    X. Liu, G. Zhang, Q. X. Pei, and Y. W. Zhang, Phonon thermal conductivity of monolayer MoS2 sheet and nanoribbons, Appl. Phys. Lett. 103(13), 133113 (2013)ADSGoogle Scholar
  156. 156.
    Z. Yan, G. Liu, J. M. Khan, and A. A. Balandin, Graphene quilts for thermal management of high-power gan transistors, Nat. Commun. 3, 827 (2012)ADSGoogle Scholar
  157. 157.
    V. Goyal and A. A. Balandin, Thermal properties of the hybrid graphene-metal nano-micro-composites: Applications in thermal interface materials, Appl. Phys. Lett. 100(7), 073113 (2012)ADSGoogle Scholar
  158. 158.
    K. M. F. Shahil and A. A. Balandin, Graphenemultilayer graphene nanocomposites as highly efficient thermal interface materials, Nano Lett. 12(2), 861 (2012)ADSGoogle Scholar
  159. 159.
    P. Goli, S. Legedza, A. Dhar, R. Salgado, J. Renteria, and A. A. Balandin, Graphene-enhanced hybrid phase change materials for thermal management of Li-ion batteries, J. Power Sources 248(15), 37 (2014)ADSGoogle Scholar
  160. 160.
    H. Malekpour, K. H. Chang, J. C. Chen, C. Y. Lu, D. L. Nika, K. S. Novoselov, and A. A. Balandin, Thermal conductivity of graphene laminate, Nano Lett. 14(9), 5155 (2014)Google Scholar
  161. 161.
    P. Song, Z. Cao, Y. Cai, L. Zhao, Z. Fang, and S. Fu, Fabrication of exfoliated graphene-based polypropy-lene nanocomposites with enhanced mechanical and thermal properties, Polymer 52(18), 4001 (2011)Google Scholar
  162. 162.
    W. Yu, H. Xie, and D. Bao, Enhanced thermal conductivities of nanofluids containing graphene oxide nanosheets, Nanotechnology 21(5), 055705 (2010)ADSGoogle Scholar
  163. 163.
    W. Yu, H. Xie, and W. Chen, Experimental investigation on thermal conductivity of nanofluids containing graphene oxide nanosheets, J. Appl. Phys. 107(9), 094317 (2010)ADSGoogle Scholar
  164. 164.
    W. Yu, H. Xie, X. Wang, and X. Wang, Significant thermal conductivity enhancement for nanofluids containing graphene nanosheets, Phys. Lett. A 375(10), 1323 (2011)ADSGoogle Scholar
  165. 165.
    Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen, et al., Supercapacitor devices based on graphene materials, J. Phys. Chem. C 113, 131030 (2009)Google Scholar
  166. 166.
    K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene, Nature 438(7065), 197 (2005)ADSGoogle Scholar
  167. 167.
    S. Y. Zhou, G. H. Gweon, J. Graf, A. V. Fedorov, C. D. Spataru, R. D. Diehl, Y. Kopelevich, D.H. Lee, S. G. Louie, and A. Lanzara, First direct observation of Dirac fermions in graphite, Nat. Phys. 2(9), 595 (2006)Google Scholar
  168. 168.
    B. Partoens and F. M. Peeters, Normal and dirac fermions in graphene multilayers: Tight-binding description of the electronic structure, Phys. Rev. B 75(19), 193402 (2007)ADSGoogle Scholar
  169. 169.
    J. Hass, F. Varchon, J. E. Millan-Otoya, M. Sprinkle, N. Sharma, W. A. de Heer, C. Berger, P. First, L. Magaud, and E. Conrad, Why multi-layer graphene on 4h-sic 0001̄ behaves like a single sheet of graphene, Phys. Rev. Lett. 100(12), 125504 (2008)ADSGoogle Scholar
  170. 170.
    S. Reich, J. Maultzsch, C. Thomsen, and P. Ordejon, Tight-binding description of graphene, Phys. Rev. B 66(3), 035412 (2002)ADSGoogle Scholar
  171. 171.
    V. Pereira, A. Castro Neto, and N. Peres, Tight-binding approach to uniaxial strain in graphene, Phys. Rev. B 80(4), 045401 (2009)ADSGoogle Scholar
  172. 172.
    F. Guinea, M. I. Katsnelson, and A. K. Geim, Energy gaps and a zero-field quantum hall effect in graphene by strain engineering, Nat. Phys. 6(1), 30 (2010)Google Scholar
  173. 173.
    K. Nakada, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, Edge state in graphene ribbons: Nanometer size effect and edge shape dependence, Phys. Rev. B 54(24), 17954 (1996)ADSGoogle Scholar
  174. 174.
    K. K. Kam and B. A. Parkinson, Detailed photocurrent spectroscopy of the semiconducting group vi transition metal dichalcogenides, J. Phys. Chem. 86(4), 463 (1982)Google Scholar
  175. 175.
    T. Eknapakul, P. D. C. King, M. Asakawa, P. Buaphet, R. H. He, S. K. Mo, H. Takagi, K. M. Shen, F. Baumberger, T. Sasagawa, S. Jungthawan, and W. Meevasana, Electronic structure of a quasi-freestanding MoS2 monolayer, Nano Lett. 14(3), 1312 (2014)ADSGoogle Scholar
  176. 176.
    Y. Li, Z. Zhou, S. Zhang, and Z. Chen, MoS2 nanorib-bons: High stability and unusual electronic and magnetic properties, J. Am. Chem. Soc. 130(49), 16739 (2008)Google Scholar
  177. 177.
    P. Lu, X. Wu, W. Guo, and X. C. Zeng, Strain-dependent electronic and magnetic properties of MoS2 monolayer, bilayer, nanoribbons and nanotubes, Phys. Chem. Chem. Phys. 14(37), 13035 (2012)Google Scholar
  178. 178.
    B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Single-layer MoS2 transistors, Nat. Nanotechnol. 6(3), 147 (2011)ADSGoogle Scholar
  179. 179.
    V. K. Sangwan, H. N. Arnold, D. Jariwala, T. J. Marks, L. J. Lauhon, and M. C. Hersam, Low-frequency electronic noise in single-layer MoS2 transistors, Nano Lett. 13(9), 4351 (2013)Google Scholar
  180. 180.
    E. Scalise, M. Houssa, G. Pourtois, V. Afanasev, and A. Stesmans, Strain-induced semiconductor to metal transition in the two-dimensional honeycomb structure of MoS2, Nano Research 5(1), 43 (2012)Google Scholar
  181. 181.
    H. J. Conley, B. Wang, J. I. Ziegler, R. F. Jr Haglund, S. T. Pantelides, and K. I. Bolotin, Bandgap engineering of strained monolayer and bilayer MoS2, Nano Lett. 13(8), 3626 (2013)ADSGoogle Scholar
  182. 182.
    K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Atomically thin MoS2: A new direct-gap semiconductor, Phys. Rev. Lett. 105(13), 136805 (2010)ADSGoogle Scholar
  183. 183.
    R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, Fine structure constant defines visual transparency of graphene, Science 320(5881), 1308 (2008)ADSGoogle Scholar
  184. 184.
    F. Xia, T. Mueller, Y. Lin, A. Valdes-Garcia, and P. Avouris, Ultrafast graphene photodetector, Nat. Nanotechnol. 4(12), 839 (2009)ADSGoogle Scholar
  185. 185.
    O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Raden-ovic, and A. Kis, Ultrasensitive photodetectors based on monolayer MoS2, Nat. Nanotechnol. 8(7), 497 (2013)ADSGoogle Scholar
  186. 186.
    C. H. Lui, A. J. Frenzel, D. V. Pilon, Y. H. Lee, X. Ling, G. M. Akselrod, et al., Trion induced negative photoconductivity in monolayer MoS2 arXiv: 1406.5100 (2014)Google Scholar
  187. 187.
    K. Roy, M. Padmanabhan, S. Goswami, T. P. Sai, S. Kaushal, and A. Ghosh, Optically active heterostructures of graphene and ultrathin MoS2, Solid State Commun. 175–176, 35 (2013)Google Scholar
  188. 188.
    G. Algara-Siller, S. Kurasch, M. Sedighi, O. Lehtinen, and U. Kaiser, The pristine atomic structure of MoS2 monolayer protected from electron radiation damage by graphene, Appl. Phys. Lett. 103(20), 203107 (2013)ADSGoogle Scholar
  189. 189.
    N. Myoung, K. Seo, S. J. Lee, and G. Ihm, Large current modulation and spin-dependent tunneling of vertical graphene/MoS2 heterostructures, ACS Nano 7(8), 7021 (2013)Google Scholar
  190. 190.
    S. Bertolazzi, D. Krasnozhon, and A. Kis, Nonvolatile memory cells based on MoS2 /graphene heterostructures, Nano Lett. 7(4), 3246 (2013)Google Scholar
  191. 191.
    S. Larentis, J. R. Tolsma, B. Fallahazad, D. C. Dillen, K. Kim, A. H. MacDonald, and E. Tutuc, Band offset and negative compressibility in graphene-MoS2 heterostructures, Nano Lett. 14(4), 2039 (2014)ADSGoogle Scholar
  192. 192.
    W. Zhang, C. P. Chuu, J. K. Huang, C. H. Chen, M. L. Tsai, Y. H. Chang, et al., Ultrahigh-gain photodetectors based on atomically thin graphene-MoS2 heterostructures, Scientific Reports 4, 3826 (2014)ADSGoogle Scholar
  193. 193.
    F. Xia, X. Hu, Y. Sun, W. Luo, and Y. Huang, Layer-bylayer assembled MoO2 graphene thin film as a high-capacity and binder-free anode for lithium-ion batteries, Nanoscale 4(15), 4707 (2012)ADSGoogle Scholar
  194. 194.
    W. Zhang, C. P. Chuu, J. K. Huang, C. H. Chen, M. L. Tsai, Y. H. Chang, et al., Ultrahigh-gain photodetectors based on atomically thin graphene-MoS2 heterostructures, Scientific Reports 4, 3826 (2013)Google Scholar
  195. 195.
    H. Xu, D. He, M. Fu, W. Wang, H. Wu, and Y. Wang, Optical identification of MoS2/graphene heterostructure on SiO2/Si substrate, Opt. Express 22(13), 15969 (2014)Google Scholar
  196. 196.
    L. F. Wang, T. B. Ma, Y. Z. Hu, Q. Zheng, H. Wang, and J. Luo, Superlubricity of two-dimensional fluorographene/MoS2 heterostructure: A first-principles study, Nanotechnology 25(38), 385701 (2014)ADSGoogle Scholar
  197. 197.
    Y. Ma, Y. Dai, M. Guo, C. Niu, and B. Huang, Graphene adhesion on MoS2 monolayer: An ab initio study, Nanoscale 3(9), 3883 (2011)ADSGoogle Scholar
  198. 198.
    L. Yu, Y. H. Lee, X. Ling, E. J. G. Santos, Y. C. Shin, Y. Lin, M. Dubey, E. Kaxiras, J. Kong, H. Wang, and T. Palacios, Graphene/MoS2 hybrid technology for large-scale two-dimensional electronics, Nano Lett. 14(6), 3055 (2014)ADSGoogle Scholar
  199. 199.
    R. H. Miwa and W. L. Scopel, Lithium incorporation at the MoS2/graphene interface: An ab initio investigation, J. Phys.: Condens. Matter 25(44), 445301 (2013)ADSGoogle Scholar
  200. 200.
    J. W. Jiang and H. S. Park, Mechanical properties of MoS2/graphene heterostructures, Appl. Phys. Lett. 105(3), 033108 (2014)ADSGoogle Scholar
  201. 201.
    K. K. Karkkainen, A. H. Sihvola, and K. I. Nikoskinen, Effective permittivity of mixtures: Numerical validation by the FDTD method, IEEE Trans. Geosci. Rem. Sens. 38(3), 1303 (2000)ADSGoogle Scholar

Copyright information

© The Author(s) 2015

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Shanghai Institute of Applied Mathematics and Mechanics, Shanghai Key Laboratory of Mechanics in Energy EngineeringShanghai UniversityShanghaiChina

Personalised recommendations