Frontiers of Physics

, Volume 9, Issue 6, pp 780–788 | Cite as

Correlation of interfacial bonding mechanism and equilibrium conductance of molecular junctions

Research Article

Abstract

We report theoretical investigations on the role of interfacial bonding mechanism and its resulting structures to quantum transport in molecular wires. Two bonding mechanisms for the Au-S bond in an Au(111)/1,4-benzenedithiol(BDT)/Au(111) junction were identified by ab initio calculation, confirmed by a recent experiment, which, we showed, critically control charge conduction. It was found, for Au/BDT/Aujunctions, the hydrogen atom, bound by a dative bond to the Sulfur, is energetically non-dissociativeafter the interface formation. The calculated conductance and junction breakdown forces of H-non-dissociative Au/BDT/Au devices are consistent with the experimental values, while the H-dissociated devices, with the interface governed by typical covalent bonding, give conductance more than an order of magnitude larger. By examining the scattering states that traverse the junctions, we have revealed that mechanical and electric properties of a junction have strong correlation with the bonding configuration. This work clearly demonstrates that the interfacial details, rather than previously believed many-body effects, is of vital importance for correctly predicting equilibrium conductance of molecular junctions; and manifests that the interfacial contact must be carefully understood for investigating quantum transport properties of molecular nanoelectronics.

Keywords

molecular electronics contact formation bonding mechanism quantum transport 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Song, Y. Kim, Y. H. Jang, H. Jeong, M. A. Reed, and T. Lee, Observation of molecular orbital gating, Nature, 2009, 462(7276): 1039ADSCrossRefGoogle Scholar
  2. 2.
    X. Y. Xiao, B. Q. Xu and N. J. Tao, Measurement of single molecule conductance: Benzenedithiol and benzenedimethanethiol, Nano Lett., 2004, 4(2): 267ADSCrossRefGoogle Scholar
  3. 3.
    M. Tsutsui, M. Taniguchi, and T. Kawai, Atomistic mechanics and formation mechanism of metal-molecule-metal junctions, Nano Lett., 2009, 9(6): 2433ADSCrossRefGoogle Scholar
  4. 4.
    M. Di Ventra, S. T. Pantelides, and N. D. Lang, The benzene molecule as a molecular resonant-tunneling transistor, Appl. Phys. Lett., 2000, 76(23): 3448ADSCrossRefGoogle Scholar
  5. 5.
    K. Stokbro, J. Taylor, M. Brandbyge, J. L. Mozos, and P. Ordejón, Theoretical study of the nonlinear conductance of Di-thiol benzene coupled to Au(111) surfaces via thiol and thiolate bonds, Comput. Mater. Sci., 2003, 27(1–2): 151CrossRefGoogle Scholar
  6. 6.
    T. Tada, M. Kondo, and K. Yoshizawa, Green’s function formalism coupled with Gaussian broadening of discrete states for quantum transport: Application to atomic and molecular wires, J. Chem. Phys., 2004, 121(16): 8050ADSCrossRefGoogle Scholar
  7. 7.
    S.-H. Ke, H. U. Baranger, and W. Yang, Molecular conductance: Chemical trends of anchoring groups, Journal of the American Chemical Society, 2004, 126(48): 15897CrossRefGoogle Scholar
  8. 8.
    P. Delaney and J. C. Greer, Correlated electron transport in molecular electronics, Phys. Rev. Lett., 2004, 93(3): 036805ADSCrossRefGoogle Scholar
  9. 9.
    G. C. Solomon, J. R. Reimers, and N. S. Hush, Overcoming computational uncertainties to reveal chemical sensitivity in single molecule conduction calculations, J. Chem. Phys., 2005, 122(22): 224502ADSCrossRefGoogle Scholar
  10. 10.
    R. B. Pontes, F. D. Novaes, A. Fazzio, and A. J. R. da Silva, Adsorption of benzene-1,4-dithiol on the Au (111) surface and its possible role in molecular conductance, Journal of the American Chemical Society, 2006, 128(28): 8996CrossRefGoogle Scholar
  11. 11.
    D. Q. Andrews, R. P. Van Duyne, and M. A. Ratner, Stochastic modulation in molecular electronic transport junctions: molecular dynamics coupled with charge transport calculations, Nano Lett., 2008, 8(4): 1120ADSCrossRefGoogle Scholar
  12. 12.
    J. Nara, W. T. Geng, H. Kino, N. Kobayashi, and T. Ohno, Theoretical investigation on electron transport through an organic molecule: Effect of the contact structure, J. Chem. Phys., 2004, 121(13): 6485ADSCrossRefGoogle Scholar
  13. 13.
    C. Toher and S. Sanvito, Efficient atomic self-interaction correction scheme for nonequilibrium quantum transport, Phys. Rev. Lett., 2007, 99(5): 056801ADSCrossRefGoogle Scholar
  14. 14.
    C. Toher and S. Sanvito, Effects of self-interaction corrections on the transport properties of phenyl-based molecular junctions, Phys. Rev. B, 2008, 77(15): 155402ADSCrossRefGoogle Scholar
  15. 15.
    M. Strange, I. S. Kristensen, K. S. Thygesen, and K. W. Jacobsen, Benchmark density functional theory calculations for nanoscale conductance, J. Chem. Phys., 2008, 128(11): 114714ADSCrossRefGoogle Scholar
  16. 16.
    S. Y. Quek, H. J. Choi, S. G. Louie, and J. B. Neaton, Length dependence of conductance in aromatic single-molecule junctions, Nano Lett., 2009, 9(11): 3949CrossRefGoogle Scholar
  17. 17.
    M. A. Reed, C. Zhou, C. J. Muller, T. P. Burgin, and J. M. Tour, Conductance of a molecular junction, Science, 1997, 278(5336): 252CrossRefGoogle Scholar
  18. 18.
    Z. Huang, B. Q. Xu, Y. C. Chen, M. Di Ventra, and N. J. Tao, Measurement of current-induced local heating in a single molecule junction, Nano Lett., 2006, 6(6): 1240ADSCrossRefGoogle Scholar
  19. 19.
    J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett., 1996, 77(18): 3865ADSCrossRefGoogle Scholar
  20. 20.
    G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B, 1999, 59(3): 1758ADSCrossRefGoogle Scholar
  21. 21.
    G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, 1996, 54(16): 11169ADSCrossRefGoogle Scholar
  22. 22.
    J. Taylor, H. Guo, and J. Wang, Ab initio modeling of quantum transport properties of molecular electronic devices, Phys. Rev. B, 2001, 63(24): 245407ADSCrossRefGoogle Scholar
  23. 23.
    Z. Ning, Y. Zhu, J. Wang, and H. Guo, Quantitative analysis of nonequilibrium spin injection into molecular tunnel junctions, Phys. Rev. Lett., 2008, 100(5): 056803ADSCrossRefGoogle Scholar
  24. 24.
    Y. Hu, Y. Zhu, H. Gao, and H. Guo, Conductance of an ensemble of molecular wires: A statistical analysis, Phys. Rev. Lett., 2005, 95(15): 156803ADSCrossRefGoogle Scholar
  25. 25.
    M. Kamenetska, M. Koentopp, A. C. Whalley, Y. S. Park, M. L. Steigerwald, C. Nuckolls, M. S. Hybertsen, and L. Venkataraman, Formation and evolution of single-molecule junctions, Phys. Rev. Lett., 2009, 102(12): 126803ADSCrossRefGoogle Scholar
  26. 26.
    C.-C. Kaun and H. Guo, Resistance of alkanethiol molecular wires, Nano Lett., 2003, 3(11): 1521ADSCrossRefGoogle Scholar
  27. 27.
    F.-S. Li, W. Zhou, and Q. Guo, Uncovering the hidden gold atoms in a self-assembled monolayer of alkanethiol molecules on Au(111), Phys. Rev. B, 2009, 79(11): 113412ADSCrossRefGoogle Scholar
  28. 28.
    I. I. Rzeźnicka, J. Lee, P. Maksymovych, and J. T. Yates, Nondissociative chemisorption of short chain alkanethiols on Au(111), J. Phys. Chem. B, 2005, 109(33): 15992CrossRefGoogle Scholar
  29. 29.
    J.-G. Zhou and F. Hagelberg, Do Methanethiol adsorbates on the Au(111) surface dissociate? Phys. Rev. Lett., 2006, 97(4): 045505ADSCrossRefGoogle Scholar
  30. 30.
    T. Rangel, A. Ferretti, P. E. Trevisanutto, V. Olevano, and G. M. Rignanese, Transport properties of molecular junctions from many-body perturbation theory, Phys. Rev. B, 2011, 84(4): 045426ADSCrossRefGoogle Scholar
  31. 31.
    M. Strange, C. Rostgaard, H. Häkkinen, and K. S. Thygesen, Self-consistent GW calculations of electronic transport in thiol- and amine-linked molecular junctions, Phys. Rev. B, 2011, 83(11): 115108ADSCrossRefGoogle Scholar
  32. 32.
    W. Ji, Z.-Y. Lu, and H.-J. Gao, Multichannel interaction mechanism in a molecule-metal interface, Phys. Rev. B, 2008, 77(11): 113406ADSCrossRefGoogle Scholar
  33. 33.
    W. Ji, Z.-Y. Lu, and H. Gao, Electron core-hole interaction and its induced ionic structural relaxation in molecular systems under X-ray irradiation, Phys. Rev. Lett., 2006, 97(24): 246101ADSCrossRefGoogle Scholar
  34. 34.
    Z.-X. Hu, H. Lan, and W. Ji, Role of the dispersion force in modeling the interfacial properties of molecule-metal interfaces: Adsorption of thiophene on copper surfaces, Sci. Rep., 2014, 4: 5036ADSGoogle Scholar
  35. 35.
    L. Venkataraman, J. E. Klare, C. Nuckolls, M. S. Hybertsen, and M. L. Steigerwald, Dependence of single-molecule junction conductance on molecular conformation, Nature, 2006, 442(7105): 904ADSCrossRefGoogle Scholar
  36. 36.
    Y. Jiang, Q. Huan, L. Fabris, G. C. Bazan, and W. Ho, Submolecular control, spectroscopy and imaging of bondselective chemistry in single functionalized molecules, Nat. Chem., 2013, 5(1): 36CrossRefGoogle Scholar
  37. 37.
    F. Cheng, W. Ji, L. Leung, Z. Ning, J. C. Polanyi, and C.-G. Wang, How adsorbate alignment leads to selective reaction, ACS Nano, 2014, 8(8): 8669CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Physics and Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-Nano DevicesRenmin University of ChinaBeijingChina
  2. 2.Centre for the Physics of Materials and Department of PhysicsMcGill UniversityMontrealCanada

Personalised recommendations