Frontiers of Physics

, Volume 10, Issue 2, pp 231–239 | Cite as

Characteristics of indirect laser-induced plasma from a thin film of oil on a metallic substrate

  • Jun-Shan Xiu (修俊山)
  • Xue-Shi Bai (白雪石)
  • Vincent Motto-Ros
  • Jin Yu (俞进)
Research Article


Optical emissions from the major and trace elements embodied in a transparent gel prepared from cooking oil were detected after the gel was spread in a thin film on a metallic substrate. Such emissions are due to the indirect breakdown of the coating layer. The generated plasma, a mixture of substances from the substrate, the layer, and the ambient gas, was characterized using emission spectroscopy. The characteristics of the plasma formed on the metal with and without the coating layer were investigated. The results showed that Al emission induced from the aluminum substrates coated with oil films extends away from the target surface to ablate the oil film. This finally formed a bifurcating circulation of aluminum vapor against a spherical confinement wall in the front of the plume, which differed from the evolution of the plasma induced from the uncoated aluminum target. The strongest emissions of elements from the oil films can be observed at 2 mm above the target after a detection delay of 1.0 μs. A high temperature zone has been observed in the plasma after the delay of 1.0 μs for the plasma induced from the coated metal. This higher temperature determined in the plasma allows the consideration of the sensitive detection of trace elements in liquids, gels, biological samples, or thin films.


indirect laser-induced plasma thin layer aluminum substrate higher temperature 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y. H. Wei, J. Y. Zhang, T. C. Dai, T. H. Tu, and L. G. Luo, Determination of chlorine in hogwash oil and edible oil by ion chromatograph, Food Science 32(12), 213 (2011)MATHGoogle Scholar
  2. 2.
    Q. A. Ricardo, M. S. Roseli, C. C. Reinaldo, M. Norbert, and L. P. S. Carmem, The determination of trace in lubricating oils by atomic spectrometry, Spectrochim. Acta B 62(9), 952 (2007)CrossRefGoogle Scholar
  3. 3.
    L. Caneve, F. Colao, F. Sarto, V. Spizzichino, and M. Vadrucci, Laser-induced breakdownspectroscopy as a diagnostic tool for thin films elemental composition, Spectrochim. Acta B 60(7–8), 1098 (2005)CrossRefADSGoogle Scholar
  4. 4.
    P. Celio, C. Juliana, M. C. S. Lucas, and B. G. Fabinao, Laser induced breakdown spectroscopy, J. Braz. Chem. Soc. 18(3), 463 (2007)CrossRefGoogle Scholar
  5. 5.
    A. De Giacomo, M. Dell’Aglio, O. De Pascale, and M. Capitelli, From single pulse to double pulse ns-Laser Induced Breakdown Spectroscopy under water: Elemental analysis of aqueous solutions and submerged solid samples, Spectrochim. Acta B 62(8), 721 (2007)CrossRefADSGoogle Scholar
  6. 6.
    Z. Wang, T. B. Yuan, Z. Y. Hou, W. D. Zhou, J. D. Lu, H. B. Ding, and X. Y. Zeng, Laser-induced breakdown spectroscopy in China, Front. Phys. 9(4), 419 (2014)CrossRefGoogle Scholar
  7. 7.
    J. Yu and R. E. Zheng, Laser-induced plasma and laserinduced breakdown spectroscopy (LIBS) in China: The challenge and the opportunity, Front. Phys. 7(6), 647 (2012)CrossRefMathSciNetGoogle Scholar
  8. 8.
    F. Z. Dong, X. L. Chen, Q. Wang, L. X. Sun, H. B. Yu, Y. X. Liang, J. G. Wang, Z. B. Ni, Z. H. Du, Y. W. Ma, and J. D. Lu, Recent progress on the application of LIBS for metallurgical online analysis in China, Front. Phys. 7(6), 679 (2012)CrossRefGoogle Scholar
  9. 9.
    L. Zhang, Z. Y. Hu, W. Y. Bao, D. Huang, W. G. Ma, L. Dong, H. P. Wu, Z. X. Li, L. T. Xiao, and S. T. Jia, Recent progress on laser-induced breakdown spectroscopy for the monitoring of coal quality and unburned carbon in fly ash, Front. Phys. 7(6), 690 (2012)CrossRefGoogle Scholar
  10. 10.
    V. S. Burakov, N. V. Tarasenko, M. I. Nedelko, V. N. Kononovb, N. N. Vasilevb, and S. N. Isakov, Analysis of lead and sulfur in environmental samples by double pulse laser induced breakdown spectroscopy, Spectrochim. Acta B 64(2), 141 (2009)CrossRefADSGoogle Scholar
  11. 11.
    F. Boué-Bigne, Laser induced breakdown spectroscopy applications in the steel industry: Rapid analysis of segregation and decarburization, Spectrochim. Acta B 63(10), 1122 (2008)CrossRefADSGoogle Scholar
  12. 12.
    J. Kaiser, M. Galiová, K. Novotný, R. Èervenk, L. Reale, J. Novotný, M. Liška, O. Samek, V. Kanický, A. Hrdlièk, K. Stejskal, V. Adam, and R. Kizek, Mapping of lead, magnesium and copper accumulation in plant tissues by laser induced breakdown spectroscopy and laser ablation inductively coupled plasma mass spectrometry, Spectrochim. Acta B 64(1), 67 (2009)CrossRefADSGoogle Scholar
  13. 13.
    P. Fichet, P. Mauchien, J. F. Wagner, and C. Moulin, Quantitative elemental determination inwater and oil by laser induced breakdown spectroscopy, Anal. Chim. Acta 429(2), 269 (2001)CrossRefGoogle Scholar
  14. 14.
    M. A. Gondal and T. Hussain, Determination of poisonous metals in wastewater collected from paint manufacturing plant using laser-induced breakdown spectroscopy, Talanta 71(1), 73 (2007)CrossRefMathSciNetGoogle Scholar
  15. 15.
    A. Kumar, F. Y. Yueh, and J. P. Singh, Double-pulse laserinduced breakdown spectroscopy with liquid jets of different thicknesses, Appl. Opt. 42(30), 6047 (2003)CrossRefADSGoogle Scholar
  16. 16.
    N. K. Rai and A. K. Rai, LIBS-An efficient approach for the determination of Cr in industrial wastewater, J. Hazard. Mater. 150(3), 835 (2008)CrossRefMathSciNetGoogle Scholar
  17. 17.
    R. L. VanderWal, T. M. Ticich, J. R. West, and Jr. P. A. Householder, Trace metal detection by Laser-Induced Breakdown Spectroscopy, Appl. Spectrosc. 53(10), 1226 (1999)CrossRefADSGoogle Scholar
  18. 18.
    Z. J. Chen, H. K. Li, M. Liu, and R. H. Li, Fast and sensitive trace metal analysis in aqueous solutions by laser-induced breakdown spectroscopy using wood slice substrates, Spectrochim. Acta B 63(1), 64 (2008)CrossRefADSGoogle Scholar
  19. 19.
    D. Alamelu, A. Sarkar, and S. K. Aggarwal, Laser-induced breakdown spectroscopy for simultaneous determination of Sm, Eu and Gd in aqueous solution, Talanta 77(1), 256 (2008)CrossRefGoogle Scholar
  20. 20.
    Y. L. Yu, W. D. Zhou, H. G. Qian, X. J. Su, and K. Ren, Simultaneous determination of trace lead and chromium in water using laser-induced breakdown spectroscopy and paper substrate, Plasma Sci. Technol. 16(7), 683 (2014)CrossRefADSGoogle Scholar
  21. 21.
    Q. Y. Lin, Z. M. Wei, M. J. Xu, S. Wang, G. H. Niu, K. P. Liu, Y. X. Duan, and J. Yang, Laser-induced breakdown spectroscopy for solution sample analysis using porous electrospun ultrafine fibers as a solid-phase support, RSC Advances 4(28), 14392 (2014)CrossRefGoogle Scholar
  22. 22.
    A. Nadir, Ü. Y. Semira, A. A. Dilek, Y. Erife, Ultrasonic nebulization-sample introduction system for quantitative analysis of liquid samples by laser-induced breakdown spectroscopy, Spectrochim. Acta B 74–75(8–9), 87 (2012)Google Scholar
  23. 23.
    P. Yaroshchyk, R. J. S. Morrison, D. Body, and B. L. Chadwick, Quantitative determination of wear metal in engine oils using laser-induced breakdown spectroscopy: A comparison between liquid jets and static liquids, Spectrochim. Acta B 60(7–8), 986 (2005)CrossRefADSGoogle Scholar
  24. 24.
    I. Y. Elnasharty, A. K. Kassem, M. Sabsabi, and M. A. Harith, Diagnosis of lubricating oil by evaluating cyanide and carbon molecular emission lines in laser induced breakdown spectra, Spectrochim. Acta B 66(8), 588 (2011)CrossRefADSGoogle Scholar
  25. 25.
    M. A. Aguirre, S. Legnaioli, F. Almodóvar, M. Hidalgo, V. Palleschi, and A. Canals, Elemental analysis by surfaceenhanced Laser-Induced Breakdown Spectroscopy combined with liquid-liquid microextraction, Spectrochim. Acta B 79–80(1–2), 88 (2013)CrossRefGoogle Scholar
  26. 26.
    L. St-Onge, E. Kwong, M. Sabsabi, and E. B. Vadas, Quantitative analysis of pharmaceutical products by laser-induced breakdown spectroscopy, Spectrochim. Acta B 57(7), 1131 (2002)CrossRefADSGoogle Scholar
  27. 27.
    X. S. Bai, Q. L. Ma, V. Motto-Ros, J. Yu, D. Sabourdy, L. Nguyen, and A. Jalocha, Convoluted effect of laser fluence and pulse duration on the property of a nanosecond laser-induced plasma into an argon ambient gas at the atmospheric pressure, J. Appl. Phys. 113(1), 013304 (2013)CrossRefADSGoogle Scholar
  28. 28.
    A. Sáinz, A. Díaz, D. Casas, M. Pineda, F. Cubillo, and M. D. Calzada, Abel inversionapplied to a small set of emission data from a microwave plasma, Appl. Spectrosc. 60(3), 229 (2006)CrossRefADSGoogle Scholar
  29. 29.
    Q. L. Ma, V. Motto-Ros, W. Q. Lei, M. Boueri, X. S. Bai, L. J. Zheng, H. P. Zeng, and J. Yu, Temporal and spatial dynamics of laser-induced aluminum plasma in argon background at atmospheric pressure: Interplay with the ambient gas, Spectrochim. Acta B 65(11), 89 (2010)CrossRefGoogle Scholar
  30. 30.
    T. Sakka, T. Nakajima, and Y. H. Ogata, Spatial population distribution of laser ablationspecies determined by self-reversed emission line profile, J. Appl. Phys. 92(5), 2296 (2002)CrossRefADSGoogle Scholar
  31. 31.
    A. M. El Sherbini, H. Hegazy, and Th. M. El Sherbini, Measurement of electron density utilizing the Hα-line from laser produced plasma in air, Spectrochim. Acta B 61(5), 532 (2006)CrossRefADSGoogle Scholar
  32. 32.
    H. R. Griem, Spectral Line Broadening by Plasmas, New York: Academic Press, 1974Google Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Jun-Shan Xiu (修俊山)
    • 1
  • Xue-Shi Bai (白雪石)
    • 2
  • Vincent Motto-Ros
    • 2
  • Jin Yu (俞进)
    • 2
  1. 1.Department of SciencesShandong University of TechnologyZiboChina
  2. 2.Institut Lumière Matière, UMR5306 Université Lyon 1-CNRSUniversité de LyonVilleurbanne CedexFrance

Personalised recommendations