Frontiers of Physics

, Volume 9, Issue 3, pp 323–350 | Cite as

Nanomaterials for electrochemical energy storage

  • Nian Liu
  • Weiyang Li
  • Mauro Pasta
  • Yi CuiEmail author
Review Article


The development of nanotechnology in the past two decades has generated great capability of controlling materials at the nanometer scale and has enabled exciting opportunities to design materials with desirable electronic, ionic, photonic, and mechanical properties. This development has also contributed to the advance in energy storage, which is a critical technology in this century. In this article, we will review how the rational design of nanostructured materials has addressed the challenges of batteries and electrochemical capacitors and led to high-performance electrochemical energy storage devices. Four specific material systems will be discussed: i) nanostructured alloy anodes for Li-batteries, ii) nanostructured sulfur cathodes for Li-batteries, iii) nanoporous openframework battery electrodes, and iv) nanostructured electrodes for electrochemical capacitors.


nanomaterial energy storage silicon anode sulfur cathode stationary battery electrochemical capacitors 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Chu and A. Majumdar, Opportunities and challenges for a sustainable energy future, Nature, 2012, 488(7411): 294ADSGoogle Scholar
  2. 2.
    J. M. Tarascon and M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature, 2001, 414(6861): 359ADSGoogle Scholar
  3. 3.
    M. Armand and J. M. Tarascon, Building better batteries, Nature, 2008, 451(7179): 652ADSGoogle Scholar
  4. 4.
    Z. Yang, J. Zhang, M. C. W. Kintner-Meyer, X. Lu, D. Choi, J. P. Lemmon, and J. Liu, Electrochemical energy storage for green grid, Chem. Rev., 2011, 111(5): 3577Google Scholar
  5. 5.
    B. Dunn, H. Kamath, and J. M. Tarascon, Electrical energy storage for the grid: A battery of choices, Science, 2011, 334(6058): 928ADSGoogle Scholar
  6. 6.
    A. S. Aric`o, P. Bruce, B. Scrosati, J. M. Tarascon, and W. van Schalkwijk, Nanostructured materials for advanced energy conversion and storage devices, Nat. Mater., 2005, 4(5): 366ADSGoogle Scholar
  7. 7.
    Y. G. Guo, J. S. Hu, and L. J. Wan, Nanostructured materials for electrochemical energy conversion and storage devices, Adv. Mater., 2008, 20(15): 2878Google Scholar
  8. 8.
    W. J. Zhang, A review of the electrochemical performance of alloy anodes for lithium-ion batteries, J. Power Sources, 2011, 196(1): 13Google Scholar
  9. 9.
    P. G. Bruce, S. A. Freunberger, L. J. Hardwick, and J. M. Tarascon, Li-O2 and Li-S batteries with high energy storage, Nat. Mater., 2012, 11(1): 19ADSGoogle Scholar
  10. 10.
    A. N. Dey, Electrochemical alloying of lithium in organic electrolytes, J. Electrochem. Soc., 1971, 118(10): 1547Google Scholar
  11. 11.
    B. A. Boukamp, All-solid lithium electrodes with mixedconductor matrix, J. Electrochem. Soc., 1981, 128(4): 725Google Scholar
  12. 12.
    T. D. Hatchard and J. R. Dahn, In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon, J. Electrochem. Soc., 2004, 151(6): A838Google Scholar
  13. 13.
    M. N. Obrovac and L. Christensen, Structural changes in silicon anodes during lithium insertion/extraction, Electrochem. Solid-State Lett., 2004, 7(5): A93Google Scholar
  14. 14.
    M. T. McDowell, S. W. Lee, W. D. Nix, and Y. Cui, 25th anniversary article: Understanding the lithiation of silicon and other alloying anodes for lithium-ion batteries, Adv. Mater., 2013, 25(36): 4966Google Scholar
  15. 15.
    L. Y. Beaulieu, K. W. Eberman, R. L. Turner, L. J. Krause, and J. R. Dahn, Colossal reversible volume changes in lithium alloys, Electrochem. Solid-State Lett., 2001, 4(9): A137Google Scholar
  16. 16.
    S. W. Lee, M. T. McDowell, L. A. Berla, W. D. Nix, and Y. Cui, Fracture of crystalline silicon nanopillars during electrochemical lithium insertion, Proc. Natl. Acad. Sci. USA, 2012, 109(11): 4080Google Scholar
  17. 17.
    J. H. Ryu, J. W. Kim, Y. E. Sung, and S. M. Oh, Failure modes of silicon powder negative electrode in lithium secondary batteries, Electrochem. Solid-State Lett., 2004, 7(10): A306Google Scholar
  18. 18.
    J. O. Besenhard, J. Yang, and M. Winter, Will advanced lithium-alloy anodes have a chance in lithium-ion batteries? J. Power Sources, 1997, 68(1): 87ADSGoogle Scholar
  19. 19.
    H. Wu, G. Chan, J. W. Choi, I. Ryu, Y. Yao, M. T. Mc- Dowell, S. W. Lee, A. Jackson, Y. Yang, L. Hu, and Y. Cui, Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control, Nat. Nanotechnol., 2012, 7(5): 310ADSGoogle Scholar
  20. 20.
    C. K. Chan, H. Peng, G. Liu, K. McIlwrath, X. F. Zhang, R. A. Huggins, and Y. Cui, High-performance lithium battery anodes using silicon nanowires, Nat. Nanotechnol., 2008, 3(1): 31ADSGoogle Scholar
  21. 21.
    H. Wu and Y. Cui, Designing nanostructured Si anodes for high energy lithium ion batteries, Nano Today, 2012, 7(5): 414Google Scholar
  22. 22.
    C. K. Chan, R. N. Patel, M. J. O’Connell, B. A. Korgel, and Y. Cui, Solution-grown silicon nanowires for lithium-ion battery anodes, ACS Nano, 2010, 4(3): 1443Google Scholar
  23. 23.
    C. K. Chan, X. F. Zhang, and Y. Cui, High capacity Li ion battery anodes using Ge nanowires, Nano Lett., 2008, 8(1): 307ADSGoogle Scholar
  24. 24.
    P. Meduri, C. Pendyala, V. Kumar, G. U. Sumanasekera, and M. K. Sunkara, Hybrid tin oxide nanowires as stable and high capacity anodes for Li-ion batteries, Nano Lett., 2009, 9(2): 612ADSGoogle Scholar
  25. 25.
    C. K. Chan, R. Ruffo, S. S. Hong, and Y. Cui, Surface chemistry and morphology of the solid electrolyte interphase on silicon nanowire lithium-ion battery anodes, J. Power Sources, 2009, 189(2): 1132Google Scholar
  26. 26.
    R. Ruffo, S. S. Hong, C. K. Chan, R. A. Huggins, and Y. Cui, Impedance analysis of silicon nanowire lithium ion battery anodes, J. Phys. Chem. C, 2009, 113(26): 11390Google Scholar
  27. 27.
    C. K. Chan, R. Ruffo, S. S. Hong, R. A. Huggins, and Y. Cui, Structural and electrochemical study of the reaction of lithium with silicon nanowires, J. Power Sources, 2009, 189(1): 34Google Scholar
  28. 28.
    S. Misra, N. Liu, J. Nelson, S. S. Hong, Y. Cui, and M. F. Toney, In situ X-ray diffraction studies of (de)lithiation mechanism in silicon nanowire anodes, ACS Nano, 2012, 6(6): 5465Google Scholar
  29. 29.
    J. W. Choi, J. McDonough, S. Jeong, J. S. Yoo, C. K. Chan, and Y. Cui, Stepwise nanopore evolution in one-dimensional nanostructures, Nano Lett., 2010, 10(4): 1409ADSGoogle Scholar
  30. 30.
    L. F. Cui, Y. Yang, C. M. Hsu, and Y. Cui, Carbon-silicon core-shell nanowires as high capacity electrode for lithium ion batteries, Nano Lett., 2009, 9(9): 3370ADSGoogle Scholar
  31. 31.
    L. F. Cui, R. Ruffo, C. K. Chan, H. Peng, and Y. Cui, Crystalline-amorphous coretshell silicon nanowires for high capacity and high current battery electrodes, Nano Lett., 2009, 9(1): 491ADSGoogle Scholar
  32. 32.
    X. Chen, K. Gerasopoulos, J. Guo, A. Brown, C. Wang, R. Ghodssi, and J. N. Culver, Virus-enabled silicon anode for lithium-ion batteries, ACS Nano, 2010, 4(9): 5366Google Scholar
  33. 33.
    S. Zhou, X. Liu, and D. Wang, Si/TiSi2 Heteronanostructures as high-capacity anode material for li ion batteries, Nano Lett., 2010, 10(3): 860MathSciNetADSGoogle Scholar
  34. 34.
    Y. Yao, K. Huo, L. Hu, N. Liu, J. J. Cha, M. T. McDowell, P. K. Chu, and Y. Cui, Highly conductive, mechanically robust, and electrochemically inactive TiC/C nanofiber scaffold for high-performance silicon anode batteries, ACS Nano, 2011, 5(10): 8346Google Scholar
  35. 35.
    H. Zhang and P. V. Braun, Three-dimensional metal scaffold supported bicontinuous silicon battery anodes, Nano Lett., 2012, 12(6): 2778Google Scholar
  36. 36.
    R. Huang, X. Fan, W. Shen, and J. Zhu, Carbon-coated silicon nanowire array films for high-performance lithium-ion battery anodes, Appl. Phys. Lett., 2009, 95(13): 133119ADSGoogle Scholar
  37. 37.
    L. Su, Z. Zhou, and M. Ren, Core double-shell Si@SiO2@C nanocomposites as anode materials for Li-ion batteries, Chem. Commun., 2010, 46(15): 2590Google Scholar
  38. 38.
    A. Vlad, A. L. M. Reddy, A. Ajayan, N. Singh, J. F. Gohy, S. Melinte, and P. M. Ajayan, Roll up nanowire battery from silicon chips, Proc. Natl. Acad. Sci. USA, 2012, 109(38): 15168ADSGoogle Scholar
  39. 39.
    A. Kohandehghan, P. Kalisvaart, K. Cui, M. Kupsta, E. Memarzadeh, and D. Mitlin, Silicon nanowire lithium-ion battery anodes with ALD deposited TiN coatings demonstrate a major improvement in cycling performance, J. Mater. Chem. A, 2013, 1: 12850Google Scholar
  40. 40.
    Y. Yao, N. Liu, M. T. McDowell, M. Pasta, and Y. Cui, Improving the cycling stability of silicon nanowire anodes with conducting polymer coatings, Energy Environ. Sci., 2012, 5: 7927Google Scholar
  41. 41.
    L. Su, Y. Jing, and Z. Zhou, Li ion battery materials with core-shell nanostructures, Nanoscale, 2011, 3(10): 3967ADSGoogle Scholar
  42. 42.
    L. F. Cui, L. Hu, H. Wu, J. W. Choi, and Y. Cui, Inorganic glue enabling high performance of silicon particles as lithium ion battery anode, J. Electrochem. Soc., 2011, 158(5): A592Google Scholar
  43. 43.
    L. Hu, H. Wu, S. S. Hong, L. Cui, J. R. McDonough, S. Bohy, and Y. Cui, Si nanoparticle-decorated Si nanowire networks for Li-ion battery anodes, Chem. Commun., 2011, 47(1): 367Google Scholar
  44. 44.
    A. Magasinski, P. Dixon, B. Hertzberg, A. Kvit, J. Ayala, and G. Yushin, High-performance lithium-ion anodes using a hierarchical bottom-up approach, Nat. Mater., 2010, 9(4): 353ADSGoogle Scholar
  45. 45.
    D. S. Jung, T. H. Hwang, S. B. Park, and J. W. Choi, Spray drying method for large-scale and high-performance silicon negative electrodes in Li-ion batteries, Nano Lett., 2013, 13(5): 2092ADSGoogle Scholar
  46. 46.
    A. Magasinski, B. Zdyrko, I. Kovalenko, B. Hertzberg, R. Burtovyy, C. F. Huebner, T. F. Fuller, I. Luzinov, and G. Yushin, Toward efficient binders for Li-ion battery Sibased anodes: Polyacrylic acid, ACS Appl. Mater. Interfaces, 2010, 2(11): 3004Google Scholar
  47. 47.
    I. Kovalenko, B. Zdyrko, A. Magasinski, B. Hertzberg, Z. Milicev, R. Burtovyy, I. Luzinov, and G. Yushin, A major constituent of brown algae for use in high-capacity Li-ion batteries, Science, 2011, 334(6052): 75ADSGoogle Scholar
  48. 48.
    G. Liu, S. Xun, N. Vukmirovic, X. Song, P. Olalde-Velasco, H. Zheng, V. S. Battaglia, L. Wang, and W. Yang, Polymers with tailored electronic structure for high capacity lithium battery electrodes, Adv. Mater., 2011, 23(40): 4679Google Scholar
  49. 49.
    H. Wu, G. Yu, L. Pan, N. Liu, M. T. McDowell, Z. Bao, and Y. Cui, Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles, Nat. Commun., 2013, 4: 1943ADSGoogle Scholar
  50. 50.
    M. H. Park, M. G. Kim, J. Joo, K. Kim, J. Kim, S. Ahn, Y. Cui, and J. Cho, Silicon nanotube battery anodes, Nano Lett., 2009, 9(11): 3844Google Scholar
  51. 51.
    T. Song, J. Xia, J. H. Lee, D. H. Lee, M. S. Kwon, J. M. Choi, J. Wu, S. K. Doo, H. Chang, W. I. Park, D. S. Zang, H. Kim, Y. Huang, K. C. Hwang, J. A. Rogers, and U. Paik, Arrays of sealed silicon nanotubes as anodes for lithium ion batteries, Nano Lett., 2010, 10(5): 1710ADSGoogle Scholar
  52. 52.
    Y. Yao, M. T. McDowell, I. Ryu, H. Wu, N. Liu, L. Hu, W. D. Nix, and Y. Cui, Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life, Nano Lett., 2011, 11(7): 2949Google Scholar
  53. 53.
    M. H. Park, Y. Cho, K. Kim, J. Kim, M. Liu, and J. Cho, Germanium nanotubes prepared by using the Kirkendall effect as anodes for high-rate lithium batteries, Angew. Chem. Int. Ed., 2011, 123(41): 9821Google Scholar
  54. 54.
    S. Han, B. Jang, T. Kim, S. M. Oh, and T. Hyeon, Simple synthesis of hollow tin dioxide microspheres and their application to lithium-ion battery anodes, Adv. Funct. Mater., 2005, 15(11): 1845Google Scholar
  55. 55.
    X. W. Lou, Y. Wang, C. Yuan, J. Y. Lee, and L. A. Archer, Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity, Adv. Mater., 2006, 18(17): 2325Google Scholar
  56. 56.
    H. Kim, B. Han, J. Choo, and J. Cho, Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries, Angew. Chem. Int. Ed., 2008, 120(52): 10305Google Scholar
  57. 57.
    Y. Yu, L. Gu, C. Zhu, S. Tsukimoto, P. A. van Aken, and J. Maier, Reversible storage of lithium in silver-coated threedimensional macroporous silicon, Adv. Mater., 2010, 22(20): 2247Google Scholar
  58. 58.
    J. Cho, Porous Si anode materials for lithium rechargeable batteries, J. Mater. Chem., 2010, 20(20): 4009Google Scholar
  59. 59.
    H. Jia, P. Gao, J. Yang, J. Wang, Y. Nuli, and Z. Yang, Novel three-dimensional mesoporous silicon for high power lithium-ion battery anode material, Adv. Energy Mater., 2011, 1(6): 1036Google Scholar
  60. 60.
    D. Chen, X. Mei, G. Ji, M. Lu, J. Xie, J. Lu, and J. Y. Lee, Reversible lithium-ion storage in silver-treated nanoscale hollow porous silicon particles, Angew. Chem. Int. Ed., 2012, 51(10): 2409Google Scholar
  61. 61.
    J. Zhu, C. Gladden, N. Liu, Y. Cui, and X. Zhang, Nanoporous silicon networks as anodes for lithium ion batteries, Phys. Chem. Chem. Phys., 2013, 15(2): 440Google Scholar
  62. 62.
    M. Ge, J. Rong, X. Fang, and C. Zhou, Porous doped silicon nanowires for lithium ion battery anode with long cycle life, Nano Lett., 2012, 12(5): 2318ADSGoogle Scholar
  63. 63.
    Z. Bao, M. R. Weatherspoon, S. Shian, Y. Cai, P. D. Graham, S. M. Allan, G. Ahmad, M. B. Dickerson, B. C. Church, Z. Kang, H. W. III Abernathy, C. J. Summers, M. Liu, and K. H. Sandhage, Chemical reduction of three-dimensional silica micro-assemblies into microporous silicon replicas, Nature, 2007, 446(7132): 172ADSGoogle Scholar
  64. 64.
    W. Stöber, A. Fink, and E. Bohn, Controlled growth of monodisperse silica spheres in the micron size range, J. Colloid Interface Sci., 1968, 26(1): 62Google Scholar
  65. 65.
    D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, and G. D. Stucky, Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores, Science, 1998, 279(5350): 548ADSGoogle Scholar
  66. 66.
    C. O. Tuck, E. Pérez, I. T. Horváth, R. A. Sheldon, and M. Poliakoff, Valorization of biomass: Deriving more value from waste, Science, 2012, 337(6095): 695ADSGoogle Scholar
  67. 67.
    N. Liu, K. Huo, M. T. McDowell, J. Zhao, and Y. Cui, Rice husks as a sustainable source of nanostructured silicon for high performance Li-ion battery anodes, Sci. Rep., 2013, 3: 1919ADSGoogle Scholar
  68. 68.
    A. Xing, S. Tian, H. Tang, D. Losic, and Z. Bao, Mesoporous silicon engineered by the reduction of biosilica from rice husk as a high-performance anode for lithium-ion batteries, RSC Adv., 2013, 3(26): 10145Google Scholar
  69. 69.
    D. S. Jung, M. H. Ryou, Y. J. Sung, S. B. Park, and J. W. Choi, Recycling rice husks for high-capacity lithium battery anodes, Proc. Natl. Acad. Sci. USA, 2013, 110(30): 12229ADSGoogle Scholar
  70. 70.
    R. Yi, F. Dai, M. L. Gordin, S. Chen, and D. Wang, Microsized Si-C composite with interconnected nanoscale building blocks as high-performance anodes for practical application in lithium-ion batteries, Adv. Energy Mater., 2013, 3(3): 295Google Scholar
  71. 71.
    K. Xu, Nonaqueous liquid electrolytes for lithium-based rechargeable batteries, Chem. Rev., 2004, 104(10): 4303Google Scholar
  72. 72.
    P. Verma, P. Maire, and P. Novák, A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries, Electrochim. Acta, 2010, 55(22): 6332Google Scholar
  73. 73.
    D. Aurbach, Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries, J. Power Sources, 2000, 89(2): 206ADSGoogle Scholar
  74. 74.
    N. Liu, L. Hu, M. T. McDowell, A. Jackson, and Y. Cui, Prelithiated silicon nanowires as an anode for lithium ion batteries, ACS Nano, 2011, 5(8): 6487Google Scholar
  75. 75.
    V. Etacheri, O. Haik, Y. Goffer, G. A. Roberts, I. C. Stefan, R. Fasching, and D. Aurbach, Effect of fluoroethylene carbonate (FEC) on the performance and surface chemistry of Si-nanowire Li-ion battery anodes, Langmuir, 2012, 28(1): 965Google Scholar
  76. 76.
    V. Etacheri, U. Geiger, Y. Gofer, G. A. Roberts, I. C. Stefan, R. Fasching, and D. Aurbach, Exceptional electrochemical performance of Si-nanowires in 1,3-dioxolane solutions: A surface chemical investigation, Langmuir, 2012, 28(14): 6175Google Scholar
  77. 77.
    N. Liu, H. Wu, M. T. McDowell, Y. Yao, C. Wang, and Y. Cui, A yolk-shell design for stabilized and scalable li-ion battery alloy anodes, Nano Lett., 2012, 12(6): 3315Google Scholar
  78. 78.
    B. Hertzberg, A. Alexeev, and G. Yushin, Deformations in Si-Li anodes upon electrochemical alloying in nano-confined space, J. Am. Chem. Soc., 2010, 132(25): 8548Google Scholar
  79. 79.
    H. Wu, G. Zheng, N. Liu, T. J. Carney, Y. Yang, and Y. Cui, Engineering empty space between Si nanoparticles for lithium-ion battery anodes, Nano Lett., 2012, 12(2): 904ADSGoogle Scholar
  80. 80.
    X. Li, P. Meduri, X. Chen, W. Qi, M. H. Engelhard, W. Xu, F. Ding, J. Xiao, W. Wang, C. Wang, J. G. Zhang, and J. Liu, Hollow core-shell structured porous Si-C nanocomposites for Li-ion battery anodes, J. Mater. Chem., 2012, 22(22): 11014Google Scholar
  81. 81.
    B. Wang, X. Li, X. Zhang, B. Luo, Y. Zhang, and L. Zhi, Contact-engineered and void-involved silicon/carbon nanohybrids as lithium-ion-battery anodes, Adv. Mater., 2013, 25(26): 3560Google Scholar
  82. 82.
    K. Karki, Y. Zhu, Y. Liu, C. F. Sun, L. Hu, Y. Wang, C. Wang, and J. Cumings, Hoop-strong nanotubes for battery electrodes, ACS Nano, 2013, 7(9): 8295Google Scholar
  83. 83.
    X. W. Lou, C. M. Li, and L. A. Archer, Designed synthesis of coaxial SnO2@carbon hollow nanospheres for highly reversible lithium storage, Adv. Mater., 2009, 21(24): 2536Google Scholar
  84. 84.
    J. Y. Huang, L. Zhong, C. M. Wang, J. P. Sullivan, W. Xu, L. Q. Zhang, S. X. Mao, N. S. Hudak, X. H. Liu, A. Subramanian, H. Fan, L. Qi, A. Kushima, and J. Li, In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode, Science, 2010, 330(6010): 1515ADSGoogle Scholar
  85. 85.
    M. T. McDowell, I. Ryu, S. W. Lee, C. Wang, W. D. Nix, and Y. Cui, Studying the kinetics of crystalline silicon nanoparticle lithiation with in situ transmission electron microscopy, Adv. Mater., 2012, 24(45): 6034Google Scholar
  86. 86.
    Y. Yang, G. Zheng, and Y. Cui, Nanostructured sulfur cathodes, Chem. Soc. Rev., 2013, 42(7): 3018Google Scholar
  87. 87.
    A. Manthiram, Y. Fu, and Y. S. Su, Challenges and prospects of lithium-sulfur batteries, Acc. Chem. Res., 2013, 46(5): 1125Google Scholar
  88. 88.
    Y. V. Mikhaylik and J. R. Akridge, Polysulfide shuttle study in the Li/S battery system, J. Electrochem. Soc., 2004, 151(11): A1969Google Scholar
  89. 89.
    X. L. Ji and L. F. Nazar, Advances in Li-S batteries, J. Mater. Chem., 2010, 20(44): 9821Google Scholar
  90. 90.
    C. Barchasz, J. C. Lepretre, F. Alloin, and S. Patoux, New insights into the limiting parameters of the Li/S rechargeable cell, J. Power Sources, 2012, 199: 322Google Scholar
  91. 91.
    J. Shim, K. A. Striebel, and E. J. Cairns, The lithium/sulfur rechargeable cell, J. Electrochem. Soc., 2002, 149(10): A1321Google Scholar
  92. 92.
    X. Ji, K. T. Lee, and L. F. Nazar, A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries, Nat. Mater., 2009, 8(6): 500ADSGoogle Scholar
  93. 93.
    N. Jayaprakash, J. Shen, S. S. Moganty, A. Corona, and L. A. Archer, Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries, Angew. Chem. Int. Ed., 2011, 50(26): 5904Google Scholar
  94. 94.
    J. Kim, D. J. Lee, H. G. Jung, Y. K. Sun, J. Hassoun, and B. Scrosati, An advanced lithium-sulfur battery, Adv. Funct. Mater., 2013, 23(8): 1076Google Scholar
  95. 95.
    J. Guo, Y. Xu, and C. Wang, Sulfur-impregnated disordered carbon nanotubes cathode for lithium-sulfur batteries, Nano Lett., 2011, 11(10): 4288ADSGoogle Scholar
  96. 96.
    L. Ji, M. Rao, S. Aloni, L. Wang, E. J. Cairns, and Y. Zhang, Porous carbon nanofiber-sulfur composite electrodes for lithium/sulfurcells, Energy Environ. Sci., 2011, 4: 5053Google Scholar
  97. 97.
    C. Zu, Y. Fu, and A. Manthiram, Highly reversible Li/dissolved polysulfide batteries with binder-free carbon nanofiber electrodes, J. Mater. Chem. A, 2013, 1(35): 10362Google Scholar
  98. 98.
    R. Elazari, G. Salitra, A. Garsuch, A. Panchenko, and D. Aurbach, Sulfur-impregnated activated carbon fiber cloth as a binder-free cathode for rechargeable Li-S batteries, Adv. Mater., 2011, 23(47): 5641Google Scholar
  99. 99.
    Y. S. Su and A. Manthiram, Lithium-sulfur batteries with a microporous carbon paper as a bifunctional interlayer, Nat. Commun., 2012, 3: 1166ADSGoogle Scholar
  100. 100.
    B. Zhang, C. Lai, Z. Zhou, and X. P. Gao, Preparation and electrochemical properties of sulfur-acetylene black composites as cathode materials, Electrochim. Acta, 2009, 54(14): 3708Google Scholar
  101. 101.
    C. Lai, X. P. Gao, B. Zhang, T. Y. Yan, and Z. Zhou, Synthesis and Electrochemical Performance of Sulfur/Highly Porous Carbon Composites, J. Phys. Chem. C, 2009, 113(11): 4712Google Scholar
  102. 102.
    L. Ji, M. Rao, H. Zheng, L. Zhang, Y. Li, W. Duan, J. Guo, E. J. Cairns, and Y. Zhang, Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells, J. Am. Chem. Soc., 2011, 133(46): 18522Google Scholar
  103. 103.
    H. Wang, Y. Yang, Y. Liang, J. T. Robinson, Y. Li, A. Jackson, Y. Cui, and H. Dai, Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability, Nano Lett., 2011, 11(7): 2644Google Scholar
  104. 104.
    G. Zheng, Y. Yang, J. J. Cha, S. S. Hong, and Y. Cui, Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries, Nano Lett., 2011, 11(10): 4462ADSGoogle Scholar
  105. 105.
    G. Zheng, Q. Zhang, J. J. Cha, Y. Yang, W. Li, Z. W. Seh, and Y. Cui, Amphiphilic surface modification of hollow carbon nanofibers for improved cycle life of lithium sulfur batteries, Nano Lett., 2013, 13(3): 1265ADSGoogle Scholar
  106. 106.
    H. Yao, G. Zheng, W. Li, M. T. McDowell, Z. W. Seh, N. Liu, Z. Lu, and Y. Cui, Crab shells as sustainable templates from nature for nanostructured battery electrodes, Nano Lett., 2013, 13(7): 3385ADSGoogle Scholar
  107. 107.
    Y. Yang, G. Yu, J. J. Cha, H. Wu, M. Vosgueritchian, Y. Yao, Z. Bao, and Y. Cui, Improving the performance of lithium-sulfur batteries by conductive polymer coating, ACS Nano, 2011, 5(11): 9187Google Scholar
  108. 108.
    X. Ji, S. Evers, R. Black, and L. F. Nazar, Stabilizing lithium-sulphur cathodes using polysulphide reservoirs, Nat. Commun., 2011, 2: 325ADSGoogle Scholar
  109. 109.
    S. Evers, T. Yim, and L. F. Nazar, Understanding the nature of absorption/adsorption in nanoporous polysulfide sorbents for the Li-S battery, J. Phys. Chem. C, 2012, 116(37): 19653Google Scholar
  110. 110.
    J. Schuster, G. He, B. Mandlmeier, T. Yim, K. T. Lee, T. Bein, and L. F. Nazar, Spherical ordered mesoporous carbon nanoparticles with high porosity for lithium-sulfur batteries, Angew. Chem. Int. Ed., 2012, 51(15): 3591Google Scholar
  111. 111.
    J. Nelson, S. Misra, Y. Yang, A. Jackson, Y. Liu, H. Wang, H. Dai, J. C. Andrews, Y. Cui, and M. F. Toney, In Operando X-ray diffraction and transmission X-ray microscopy of lithium sulfur batteries, J. Am. Chem. Soc., 2012, 134(14): 6337Google Scholar
  112. 112.
    Z. W. Seh, W. Li, J. J. Cha, G. Zheng, Y. Yang, M. T. McDowell, P. C. Hsu, and Y. Cui, Sulphur-TiO2 yolkshell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries, Nat. Commun., 2013, 4: 1331Google Scholar
  113. 113.
    W. Li, G. Zheng, Y. Yang, Z. W. Seh, N. Liu, and Y. Cui, High-performance hollow sulfur nanostructured battery cathode through a scalable, room temperature, one-step, bottom-up approach, Proc. Natl. Acad. Sci. USA, 2013, 110(18): 7148ADSGoogle Scholar
  114. 114.
    R. Demir-Cakan, M. Morcrette, F. Nouar, C. Davoisne, T. Devic, D. Gonbeau, R. Dominko, C. Serre, G. Férey, and J. M. Tarascon, Cathode composites for Li-S batteries via the use of oxygenated porous architectures, J. Am. Chem. Soc., 2011, 133(40): 16154Google Scholar
  115. 115.
    L. Xiao, Y. Cao, J. Xiao, B. Schwenzer, M. H. Engelhard, L. V. Saraf, Z. Nie, G. J. Exarhos, and J. Liu, A soft approach to encapsulate sulfur: Polyaniline nanotubes for lithiumsulfur batteries with long cycle life, Adv. Mater., 2012, 24(9): 1176Google Scholar
  116. 116.
    Y. Fu and A. Manthiram, Core-shell structured sulfurpolypyrrole composite cathodes for lithium-sulfur batteries, RSC Adv., 2012, 2: 5927Google Scholar
  117. 117.
    H. Chen, W. Dong, J. Ge, C. Wang, X. Wu, W. Lu, and L. Chen, Ultrafine sulfur nanoparticles in conducting polymer shell as cathode materials for high performance lithium/sulfur batteries, Sci. Rep., 2013, 3: 1910ADSGoogle Scholar
  118. 118.
    Y. Bouligand, Twisted fibrous arrangements in biological materials and cholesteric mesophases, Tissue Cell, 1972, 4(2): 189Google Scholar
  119. 119.
    R. Roer and R. Dillaman, The structure and calcification of the crustacean cuticle, Am. Zool., 1984, 24: 893Google Scholar
  120. 120.
    M. M. Giraud-Guille, Plywood structures in nature, Curr. Opin. Solid State Mater. Sci., 1998, 3(3): 221ADSGoogle Scholar
  121. 121.
    P. Y. Chen, A. Y. M. Lin, J. McKittrick, and M. A. Meyers, Structure and mechanical properties of crab exoskeletons, Acta Biomater., 2008, 4(3): 587Google Scholar
  122. 122.
    N. Fujita, M. Asai, T. Yamashita, and S. Shinkai, Solgel transcription of silica-based hybrid nanostructures using poly(N-vinylpyrrolidone)-coated [60]fullerene, single-walled carbon nanotube and block copolymer templates, J. Mater. Chem., 2004, 14(14): 2106Google Scholar
  123. 123.
    M. J. O’Connell, P. Boul, L. M. Ericson, C. Huffman, Y. Wang, E. Haroz, C. Kuper, J. Tour, K. D. Ausman, and R. E. Smalley, Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping, Chem. Phys. Lett., 2001, 342(3–4): 265ADSGoogle Scholar
  124. 124.
    J. Hassoun and B. Scrosati, A high-performance polymer tin sulfur lithium ion battery, Angew. Chem. Int. Ed., 2010, 49(13): 2371Google Scholar
  125. 125.
    M. Nagao, A. Hayashi, and M. Tatsumisago, High-capacity Li2S-nanocarbon composite electrode for all-solid-state rechargeable lithium batteries, J. Mater. Chem., 2012, 22(19): 10015Google Scholar
  126. 126.
    K. Cai, M. K. Song, E. J. Cairns, and Y. Zhang, Nanostructured Li2S-C composites as cathode material for high-energy lithium/sulfur batteries, Nano Lett., 2012, 12(12): 6474ADSGoogle Scholar
  127. 127.
    J. Guo, Z. Yang, Y. Yu, H. D. Abruña, and L. A. Archer, Lithium-sulfur battery cathode enabled by lithium-nitrile interaction, J. Am. Chem. Soc., 2013, 135(2): 763Google Scholar
  128. 128.
    Z. Lin, Z. Liu, N. J. Dudney, and C. Liang, Lithium superionic sulfide cathode for all-solid lithium-sulfur batteries, ACS Nano, 2013, 7(3): 2829Google Scholar
  129. 129.
    Y. Yang, M. T. McDowell, A. Jackson, J. J. Cha, S. S. Hong, and Y. Cui, New nanostructured Li2S/silicon rechargeable battery with high specific energy, Nano Lett., 2010, 10(4): 1486ADSGoogle Scholar
  130. 130.
    Y. Yang, G. Zheng, S. Misra, J. Nelson, M. F. Toney, and Y. Cui, High-capacity micrometer-sized Li2S particles as cathode materials for advanced rechargeable lithium-ion batteries, J. Am. Chem. Soc., 2012, 134(37): 15387Google Scholar
  131. 131.
    Z. W. Seh, Q. Zhang, W. Li, G. Zheng, H. Yao, and Y. Cui, Stable cycling of lithium sulfide cathodes through strong affinity with a bifunctional binder, Chem. Sci., 2013, 4(9): 3673Google Scholar
  132. 132.
    A. Kraft, On the discovery and history of prussian blue, Bull. Hist. Chem., 2008, 33(2): 61Google Scholar
  133. 133.
    S. I. Ohkoshi, K. I. Arai, Y. Sato, and K. Hashimoto, Humidity-induced magnetization and magnetic pole inversion in a cyano-bridged metal assembly, Nat. Mater., 2004, 3(12): 857ADSGoogle Scholar
  134. 134.
    T. Matsuda, J. Kim, and Y. Moritomo, Symmetry switch of cobalt ferrocyanide framework by alkaline cation exchange, J. Am. Chem. Soc., 2010, 132(35): 12206Google Scholar
  135. 135.
    E. Coronado, M. C. Giménez-López, G. Levchenko, F. M. Romero, V. García-Baonza, A. Milner, and M. PazPasternak, Pressure-tuning of magnetism and linkage isomerism in iron(II) hexacyanochromate, J. Am. Chem. Soc., 2005, 127(13): 45Google Scholar
  136. 136.
    S. Margadonna, K. Prassides, and A. N. Fitch, Zero thermal expansion in a Prussian Blue analogue, J. Am. Chem. Soc., 2004, 126(47): 15390Google Scholar
  137. 137.
    S. S. Kaye and J. R. Long, Hydrogen storage in the dehydrated prussian blue analogues M3[Co(CN)6]2 (M = Mn, Fe, Co, Ni, Cu, Zn), J. Am. Chem. Soc., 2005, 127(18): 6506Google Scholar
  138. 138.
    K. Hashimoto and H. Ohkoshi, Design of novel magnets using Prussian blue analogues, Phil. Trans. R. Soc. Lond. A, 1999, 357(1762): 2977ADSGoogle Scholar
  139. 139.
    T. Mallah, A. Marvilliers, and E. Rivière, From ferromagnets to high-spin molecules: The role of the organic ligands, Phil. Trans. R. Soc. Lond. A, 1999, 357(1762): 3139ADSGoogle Scholar
  140. 140.
    M. Verdaguer, A. Bleuzen, V. Marvaud, J. Vaissermann, M. Seuleiman, C. Desplanches, A. Scuiller, C. Train, R. Garde, G. Gelly, C. Lomenech, I. Rosenman, P. Veillet, C. Cartier, and F. Villain, Molecules to build solids: High T c moleculebased magnets by design and recent revival of cyano complexes chemistry, Coord. Chem. Rev., 1999, 190–192: 1023Google Scholar
  141. 141.
    A. A. Karyakin, Prussian blue and its analogues: Electrochemistry and analytical applications, Electroanalysis, 2001, 13(10): 813Google Scholar
  142. 142.
    T. Matsuda, J. Kim, K. Ohoyama, and Y. Moritomo, Universal thermal response of the Prussian blue lattice, Phys. Rev. B, 2009, 79(17): 172302ADSGoogle Scholar
  143. 143.
    A. Ludi and H. Güdel, Inorganic Chemistry, Berlin/Heidelberg: Springer, 1973: 1Google Scholar
  144. 144.
    H. J. Buser, D. Schwarzenbach, W. Petter, and A. Ludi, The crystal structure of Prussian blue: Fe4[Fe(CN)6]3.xH2O, Inorg. Chem., 1977, 16(11): 2704Google Scholar
  145. 145.
    F. Herren, P. Fischer, A. Ludi, and W. Hälg, Neutron diffraction study of Prussian blue, Fe4[Fe(CN)6]3.xH2O. Location of water molecules and long-range magnetic order, Inorg. Chem., 1980, 19(4): 956Google Scholar
  146. 146.
    P. Bhatt, N. Thakur, M. D. Mukadam, S. S. Meena, and S. M. Yusuf, Evidence for the existence of oxygen clustering and understanding of structural disorder in prussian blue analogues molecular magnet M15[Cr(CN)6]·zH2O (M = Fe and Co): Reverse Monte Carlo simulation and neutron diffraction study, J. Phys. Chem. C, 2013, 117(6): 2676Google Scholar
  147. 147.
    C. D. Wessells, R. A. Huggins, and Y. Cui, Copper hexacyanoferrate battery electrodes with long cycle life and high power, Nat. Commun., 2011, 2: 550ADSGoogle Scholar
  148. 148.
    D. E. Stilwell, K. H. Park, and M. H. Miles, Electrochemical studies of the factors influencing the cycle stability of Prussian blue films, J. Appl. Electrochem., 1992, 22(4): 325Google Scholar
  149. 149.
    T. Oi, Electrochromic materials, Annu. Rev. Mater. Sci., 1986, 16(1): 185ADSGoogle Scholar
  150. 150.
    K. Itaya, T. Ataka, and S. Toshima, Spectroelectrochemistry and electrochemical preparation method of Prussian blue modified electrodes, J. Am. Chem. Soc., 1982, 104(18): 4767Google Scholar
  151. 151.
    F. Scholz and A. Dostal, The formal potentials of solid metal hexacyanometalates, Angew. Chem. Int. Ed. Engl., 1996, 34(2324): 2685Google Scholar
  152. 152.
    N. Imanishi, T. Morikawa, J. Kondo, Y. Takeda, O. Yamamoto, N. Kinugasa, and T. Yamagishi, Lithium intercalation behavior into iron cyanide complex as positive electrode of lithium secondary battery, J. Power Sources, 1999, 79(2): 215ADSGoogle Scholar
  153. 153.
    D. Asakura, C. H. Li, Y. Mizuno, M. Okubo, H. S. Zhou, and D. R. Talham, Bimetallic cyanide-bridged coordination polymers as lithium ion cathode materials: Core-shell nanoparticles with enhanced cyclability, J. Am. Chem. Soc., 2013, 135(7): 2793Google Scholar
  154. 154.
    X. J. Wang, F. Krumeich, and R. Nesper, Nanocomposite of manganese ferrocyanide and graphene: A promising cathode material for rechargeable lithium ion batteries, Electrochem. Commun., 2013, 34: 246Google Scholar
  155. 155.
    N. Imanishi, T. Morikawa, J. Kondo, R. Yamane, Y. Takeda, O. Yamamoto, H. Sakaebe, and M. Tabuchi, Lithium intercalation behavior of iron cyanometallates, J. Power Sources, 1999, 81–82: 530Google Scholar
  156. 156.
    M. Takachi, Y. Kurihara, and Y. Moritomo, Channel size dependence of Li+ insertion/extraction in nanoporous hexacyanoferrates, J. Mater. Sci. Eng. B, 2012, 2(8): 452Google Scholar
  157. 157.
    M. Okubo and I. Honma, Ternary metal Prussian blue analogue nanoparticles as cathode materials for Li-ion batteries, Dalton Trans., 2013, 42(45): 15881Google Scholar
  158. 158.
    M. Takachi, T. Matsuda, and Y. Moritomo, Structural, electronic, and electrochemical properties of LixO[Fe(CN)6]0.90·2.9H2O, Jpn. J. Appl. Phys., 2013, 52: 044301Google Scholar
  159. 159.
    L. Wang, Y. H. Lu, J. Liu, M. W. Xu, J. G. Cheng, D. W. Zhang, and J. B. Goodenough, A superior low-cost cathode for a Na-ion battery, Angew. Chem. Int. Ed., 2013, 52(7): 1964Google Scholar
  160. 160.
    Y. Lu, L. Wang, J. Cheng, and J. B. Goodenough, Prussian blue: A new framework of electrode materials for sodium batteries, Chem. Commun., 2012, 48(52): 6544Google Scholar
  161. 161.
    H. Lee, Y. I. Kim, J. K. Park, and J. W. Choi, Sodium zinc hexacyanoferrate with a well-defined open framework as a positive electrode for sodium ion batteries, Chem. Commun., 2012, 48(67): 8416Google Scholar
  162. 162.
    T. Matsuda, M. Takachi, and Y. Moritomo, A sodium manganese ferrocyanide thin film for Na-ion batteries, Chem. Commun., 2013, 49(27): 2750Google Scholar
  163. 163.
    M. Takachi, T. Matsuda, and Y. Moritomo, Cobalt hexacyanoferrate as cathode material for Na+ secondary battery, Appl. Phys. Express, 2013, 6(2): 025802ADSGoogle Scholar
  164. 164.
    W. Li, J. R. Dahn, and D. S. Wainwright, Rechargeable lithium batteries with aqueous electrolytes, Science, 1994, 264(5162): 1115ADSGoogle Scholar
  165. 165.
    Y. Mizuno, M. Okubo, D. Asakura, T. Saito, E. Hosono, Y. Saito, K. Oh-ishi, T. Kudo, and H. Zhou, Impedance spectroscopic study on interfacial ion transfers in cyanidebridged coordination polymer electrode with organic electrolyte, Electrochim. Acta, 2012, 63: 139Google Scholar
  166. 166.
    Y. Mizuno, M. Okubo, E. Hosono, T. Kudo, H. Zhou, and K. Oh-ishi, Suppressed activation energy for interfacial charge transfer of a Prussian blue analog thin film electrode with hydrated ions (Li+, Na+, and Mg2+), J. Phys. Chem. C, 2013, 117(21): 10877Google Scholar
  167. 167.
    S. I. Ohkoshi, K. Nakagawa, K. Tomono, K. Imoto, Y. Tsunobuchi, and H. Tokoro, High proton conductivity in prussian blue analogues and the interference effect by magnetic ordering, J. Am. Chem. Soc., 2010, 132(19): 6620Google Scholar
  168. 168.
    Y. Moritomo, T. Matsuda, Y. Kurihara, and J. Kim, Cubic-rhombohedral structural phase transition in Na1.32Mn[Fe(CN)6]0.83·3.6H2O, J. Phys. Soc. Jpn., 2011, 80(7): 074608ADSGoogle Scholar
  169. 169.
    C. D. Wessells, M. T. McDowell, S. V. Peddada, M. Pasta, R. A. Huggins, and Y. Cui, Tunable reaction potentials in open framework nanoparticle battery electrodes for grid-scale energy storage, ACS Nano, 2012, 6(2): 1688Google Scholar
  170. 170.
    R. Chen, H. Tanaka, T. Kawamoto, M. Asai, C. Fukushima, H. Na, M. Kurihara, M. Watanabe, M. Arisaka, and T. Nankawa, Selective removal of cesium ions from wastewater using copper hexacyanoferrate nanofilms in an electrochemical system, Electrochim. Acta, 2013, 87: 119Google Scholar
  171. 171.
    C. D. Wessells, S. V. Peddada, M. T. McDowell, R. A. Huggins, and Y. Cui, The effect of insertion species on nanostruc-tured open framework hexacyanoferrate battery electrodes, J. Electrochem. Soc., 2012, 159(2): A98Google Scholar
  172. 172.
    C. D. Wessells, S. V. Peddada, R. A. Huggins, and Y. Cui, Nickel hexacyanoferrate nanoparticle electrodes for aqueous sodium and potassium ion batteries, Nano Lett., 2011, 11(12): 5421ADSGoogle Scholar
  173. 173.
    M. Pasta, C. D. Wessells, R. A. Huggins, and Y. Cui, A high-rate and long cycle life aqueous electrolyte battery for grid-scale energy storage, Nat. Commun., 2012, 3: 1149ADSGoogle Scholar
  174. 174.
    R. Klenze, B. Kanellakopulos, G. Trageser, and H. H. Eysel, Manganese hexacyanomanganate: Magnetic interactions via cyanide in a mixed valence Prussian blue type compound, J. Chem. Phys., 1980, 72(11): 5819ADSGoogle Scholar
  175. 175.
    J. H. Her, P. W. Stephens, C. M. Kareis, J. G. Moore, K. S. Min, J. W. Park, G. Bali, B. S. Kennon, and J. S. Miller, Anomalous non-Prussian blue structures and magnetic ordering of K2MnII[MnII(CN)6] and Rb2 MnII[MnII(CN)6], Inorg. Chem., 2010, 49(4): 1524Google Scholar
  176. 176.
    M. Pasta, C. D. Wessells, N. Liu, J. Nelson, M. T. Mc Dowell, R. A. Huggins, M. F. Toney, and Y. Cui, Full open-framework batteries for stationary energy storage, Nat. Commun., DOI: 10.1038/ncomms4007, 201Google Scholar
  177. 177.
    R. Y. Wang, C. D. Wessells, R. A. Huggins, and Y. Cui, Highly reversible open framework nanoscale electrodes for divalent ion batteries, Nano Lett., 2013, 13(11): 5748ADSGoogle Scholar
  178. 178.
    F. La Mantia, M. Pasta, H. D. Deshazer, B. E. Logan, and Y. Cui, Batteries for efficient energy extraction from a water salinity difference, Nano Lett., 2011, 11(4): 1810ADSGoogle Scholar
  179. 179.
    M. Pasta, C. D. Wessells, Y. Cui, and F. La Mantia, A desalination battery, Nano Lett., 2012, 12(2): 839ADSGoogle Scholar
  180. 180.
    M. Pasta, A. Battistel, and F. La Mantia, Batteries for lithium recovery from brines, Energy Environ. Sci., 2012, 5(11): 9487Google Scholar
  181. 181.
    P. J. Hall, M. Mirzaeian, S. I. Fletcher, F. B. Sillars, A. J. R. Rennie, G. O. Shitta-Bey, G. Wilson, A. Cruden, and R. Carter, Energy storage in electrochemical capacitors: designing functional materials to improve performance, Energy Environ. Sci., 2010, 3(9): 1238Google Scholar
  182. 182.
    M. Winter and R. J. Brodd, What are batteries, fuel cells, and supercapacitors? Chem. Rev., 2004, 104(10): 4245Google Scholar
  183. 183.
    J. R. Miller and P. Simon, Electrochemical capacitors for energy management, Science, 2008, 321(5889): 651Google Scholar
  184. 184.
    P. Simon and Y. Gogotsi, Materials for electrochemical capacitors, Nat. Mater., 2008, 7(11): 845ADSGoogle Scholar
  185. 185.
    V. Subramanian, S. C. Hall, P. H. Smith, and B. Rambabu, Mesoporous anhydrous RuO2 as a supercapacitor electrode material, Solid State Ion., 2004, 175(1–4): 511Google Scholar
  186. 186.
    C. C. Hu, K. H. Chang, M. C. Lin, and Y. T. Wu, Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors, Nano Lett., 2006, 6(12): 2690ADSGoogle Scholar
  187. 187.
    H. Y. Lee and J. B. Goodenough, Supercapacitor behavior with KCl electrolyte, J. Solid State Chem., 1999, 144(1): 220ADSGoogle Scholar
  188. 188.
    A. Rudge, J. Davey, I. Raistrick, S. Gottesfeld, and J. P. Ferraris, Conducting polymers as active materials in electrochemical capacitors, J. Power Sources, 1994, 47(1–2): 89ADSGoogle Scholar
  189. 189.
    L. Hu and Y. Cui, Energy and environmental nanotechnology in conductive paper and textiles, Energy Environ. Sci., 2012, 5(4): 6423MathSciNetGoogle Scholar
  190. 190.
    C. Niu, E. K. Sichel, R. Hoch, D. Moy, and H. Tennent, High power electrochemical capacitors based on carbon nanotube electrodes, Appl. Phys. Lett., 1997, 70(11): 1480ADSGoogle Scholar
  191. 191.
    M. Kaempgen, C. K. Chan, J. Ma, Y. Cui, and G. Gruner, Printable thin film supercapacitors using single-walled carbon nanotubes, Nano Lett., 2009, 9(5): 1872ADSGoogle Scholar
  192. 192.
    L. Hu, J. W. Choi, Y. Yang, S. Jeong, F. La Mantia, L. F. Cui, and Y. Cui, Highly conductive paper for energy-storage devices, Proc. Natl. Acad. Sci. USA, 2009, 106(51): 21490ADSGoogle Scholar
  193. 193.
    M. Pasta, F. La Mantia, L. Hu, H. Deshazer, and Y. Cui, Aqueous supercapacitors on conductive cotton, Nano Res., 2010, 3(6): 452Google Scholar
  194. 194.
    L. Hu, M. Pasta, F. L. Mantia, L. Cui, S. Jeong, H. D. Deshazer, J. W. Choi, S. M. Han, and Y. Cui, Stretchable, porous, and conductive energy textiles, Nano Lett., 2010, 10(2): 708ADSGoogle Scholar
  195. 195.
    X. Xie, G. Yu, N. Liu, Z. Bao, C. S. Criddle, and Y. Cui, Graphene-sponges as high-performance low-cost anodes for microbial fuel cells, Energy Environ. Sci., 2012, 5: 6862Google Scholar
  196. 196.
    L. Hu, H. Wu, and Y. Cui, Printed energy storage devices by integration of electrodes and separators into single sheets of paper, Appl. Phys. Lett., 2010, 96(18): 183502ADSGoogle Scholar
  197. 197.
    G. Zheng, L. Hu, H. Wu, X. Xie, and Y. Cui, Paper supercapacitors by a solvent-free drawing method, Energy Environ. Sci., 2011, 4(9): 3368Google Scholar
  198. 198.
    Z. S. Wu, G. Zhou, L. C. Yin, W. Ren, F. Li, and H. M. Cheng, Graphene/metal oxide composite electrode materials for energy storage, Nano Energy, 2012, 1(1): 107Google Scholar
  199. 199.
    G. Yu, X. Xie, L. Pan, Z. Bao, and Y. Cui, Hybrid nanostructured materials for high-performance electrochemical capacitors, Nano Energy, 2013, 2(2): 213Google Scholar
  200. 200.
    X. Lang, A. Hirata, T. Fujita, and M. Chen, Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors, Nat. Nanotechnol., 2011, 6(4): 232ADSGoogle Scholar
  201. 201.
    L. Hu, W. Chen, X. Xie, N. Liu, Y. Yang, H. Wu, Y. Yao, M. Pasta, H. N. Alshareef, and Y. Cui, Symmetrical MnO2-carbon nanotube-textile nanostructures for wearable pseudocapacitors with high mass loading, ACS Nano, 2011, 5(11): 8904Google Scholar
  202. 202.
    W. Chen, R. B. Rakhi, L. Hu, X. Xie, Y. Cui, and H. N. Alshareef, High-performance nanostructured supercapacitors on a sponge, Nano Lett., 2011, 11(12): 5165ADSGoogle Scholar
  203. 203.
    G. Yu, L. Hu, M. Vosgueritchian, H. Wang, X. Xie, J. R. McDonough, X. Cui, Y. Cui, and Z. Bao, Solutionprocessed graphene/MnO2 nanostructured textiles for highperformance electrochemical capacitors, Nano Lett., 2011, 11(7): 2905Google Scholar
  204. 204.
    G. Yu, L. Hu, N. Liu, H. Wang, M. Vosgueritchian, Y. Yang, Y. Cui, and Z. Bao, Enhancing the supercapacitor performance of graphene/MnO2 nanostructured electrodes by conductive wrapping, Nano Lett., 2011, 11(10): 4438ADSGoogle Scholar
  205. 205.
    N. A. Peppas, J. Z. Hilt, A. Khademhosseini, and R. Langer, Hydrogels in biology and medicine: From molecular principles to bionanotechnology, Adv. Mater., 2006, 18(11): 1345Google Scholar
  206. 206.
    A. Guiseppi-Elie, Electroconductive hydrogels: Synthesis, characterization and biomedical applications, Biomaterials, 2010, 31(10): 2701Google Scholar
  207. 207.
    R. A. Green, S. Baek, L. A. Poole-Warren, and P. J. Martens, Conducting polymer-hydrogels for medical electrode applications, Sci. Technol. Adv. Mater., 2010, 11(1): 014107Google Scholar
  208. 208.
    S. Ghosh, J. Rasmusson, and O. Inganäs, Supramolecular self-assembly for enhanced conductivity in conjugated polymer blends: Ionic crosslinking in blends of poly (3,4-ethylenedioxythiophene)-poly(styrenesulfonate) and poly(vinylpyrrolidone), Adv. Mater., 1998, 10(14): 1097Google Scholar
  209. 209.
    S. Ghosh and O. Inganäs, Conducting polymer hydrogels as 3D electrodes: Applications for supercapacitors, Adv. Mater., 1999, 11(14): 1214Google Scholar
  210. 210.
    N. Mano, J. E. Yoo, J. Tarver, Y. L. Loo, and A. Heller, An electron-conducting cross-linked polyaniline-based redox hydrogel, formed in one step at pH 7.2, wires glucose oxidase, J. Am. Chem. Soc., 2007, 129(22): 7006Google Scholar
  211. 211.
    L. Pan, G. Yu, D. Zhai, H. R. Lee, W. Zhao, N. Liu, H. Wang, B. C. K. Tee, Y. Shi, Y. Cui, and Z. Bao, Hierarchical nanostructured conducting polymer hydrogel with high electrochemical activity, Proc. Natl. Acad. Sci. USA, 2012, 109(24): 9287Google Scholar
  212. 212.
    Y. Zhao, B. Liu, L. Pan, and G. Yu, 3D nanostructured conductive polymer hydrogels for high-performance electrochemical devices, Energy Environ. Sci., 2013, 6(10): 2856Google Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of ChemistryStanford UniversityStanfordUSA
  2. 2.Department of Materials Science and EngineeringStanford UniversityStanfordUSA
  3. 3.Stanford Institute for Materials and Energy SciencesSLAC National Accelerator LaboratoryMenlo ParkUSA

Personalised recommendations