Frontiers of Physics

, Volume 9, Issue 5, pp 571–586 | Cite as

An experimental approach for investigating many-body phenomena in Rydberg-interacting quantum systems

Review Article

Abstract

Recent developments in the study of ultracold Rydberg gases demand an advanced level of experimental sophistication, in which high atomic and optical densities must be combined with excellent control of external fields and sensitive Rydberg atom detection. We describe a tailored experimental system used to produce and study Rydberg-interacting atoms excited from dense ultracold atomic gases. The experiment has been optimized for fast duty cycles using a high flux cold atom source and a three beam optical dipole trap. The latter enables tuning of the atomic density and temperature over several orders of magnitude, all the way to the Bose-Einstein condensation transition. An electrode structure surrounding the atoms allows for precise control over electric fields and single-particle sensitive field ionization detection of Rydberg atoms. We review two experiments which highlight the influence of strong Rydberg-Rydberg interactions on different many-body systems. First, the Rydberg blockade effect is used to pre-structure an atomic gas prior to its spontaneous evolution into an ultracold plasma. Second, hybrid states of photons and atoms called dark-state polaritons are studied. By looking at the statistical distribution of Rydberg excited atoms we reveal correlations between dark-state polaritons. These experiments will ultimately provide a deeper understanding of many-body phenomena in strongly-interacting regimes, including the study of strongly-coupled plasmas and interfaces between atoms and light at the quantum level.

Keywords

ultracold Rydberg gases ultracold plasmas Bose-Einstein condensation atom-light interactions many-body interactions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and notes

  1. 1.
    M. Saffman, T. G. Walker, and K. Mølmer, Quantum information with Rydberg atoms, Rev. Mod. Phys., 2010, 82(3): 2313ADSGoogle Scholar
  2. 2.
    D. Comparat and P. Pillet, Dipole blockade in a cold Rydberg atomic sample, J. Opt. Soc. Am. B, 2010, 27(6): A208ADSGoogle Scholar
  3. 3.
    J. D. Pritchard, K. J. Weatherill, and C. S. Adams, Nonlinear optics using cold Rydberg atoms; Annual Review of Cold Atoms and Molecule chapter 8, Singapore: World Scientific, 2013: 301–350Google Scholar
  4. 4.
    F. Robicheaux and J. Hernández, Many-body wave function in a dipole blockade configuration, Phys. Rev. A, 2005, 72(6): 063403ADSGoogle Scholar
  5. 5.
    H. Weimer, R. Löw, T. Pfau, and H. P. Büchler, Quantum critical behavior in strongly interacting Rydberg gases, Phys. Rev. Lett., 2008, 101(25): 250601ADSGoogle Scholar
  6. 6.
    A. Schwarzkopf, R. E. Sapiro, and G. Raithel, Imaging spatial correlations of Rydberg excitations in cold atom clouds, Phys. Rev. Lett., 2011, 107(10): 103001ADSGoogle Scholar
  7. 7.
    P. Schau_, M. Cheneau, M. Endres, T. Fukuhara, S. Hild, A. Omran, T. Pohl, C. Gross, S. Kuhr, and I. Bloch, Observation of spatially ordered structures in a two-dimensional Rydberg gas, Nature, 2012, 491(7422): 87ADSGoogle Scholar
  8. 8.
    C. Ates and I. Lesanovsky, Entropic enhancement of spatial correlations in a laser-driven Rydberg gas, Phys. Rev. A, 2012, 86(1): 013408ADSGoogle Scholar
  9. 9.
    D. Petrosyan, M. Höning, and M. Fleischhauer, Spatial correlations of Rydberg excitations in optically driven atomic ensembles, Phys. Rev. A, 2013, 87(5): 053414ADSGoogle Scholar
  10. 10.
    T. Pohl, E. Demler, and M. D. Lukin, Dynamical crystallization in the dipole blockade of ultracold atoms, Phys. Rev. Lett., 2010, 104(4): 043002ADSGoogle Scholar
  11. 11.
    J. Schachenmayer, I. Lesanovsky, A. Micheli, and A. J. Daley, Dynamical crystal creation with polar molecules or Rydberg atoms in optical lattices, New J. Phys., 2010, 12(10): 103044ADSGoogle Scholar
  12. 12.
    R. M. W. van Bijnen, S. Smit, K. A. H. van Leeuwen, E. J. D. Vredenbregt, and S. J. J. M. F. Kokkelmans, Adiabatic formation of Rydberg crystals with chirped laser pulses, J. Phys. B: At. Mol. Opt. Phys., 2011, 44(18): 184008ADSGoogle Scholar
  13. 13.
    L. Santos, G. V. Shlyapnikov, P. Zoller, and M. Lewenstein, Bose-Einstein condensation in trapped dipolar gases, Phys. Rev. Lett., 2000, 85(9): 1791ADSGoogle Scholar
  14. 14.
    G. Pupillo, A. Micheli, M. Boninsegni, I. Lesanovsky, and P. Zoller, Strongly correlated gases of Rydberg-dressed atoms: Quantum and classical dynamics, Phys. Rev. Lett., 2010, 104(22): 223002ADSGoogle Scholar
  15. 15.
    N. Henkel, R. Nath, and T. Pohl, Three-dimensional roton excitations and supersolid formation in Rydberg-excited Bose-Einstein condensates, Phys. Rev. Lett., 2010, 104(19): 195302ADSGoogle Scholar
  16. 16.
    N. Henkel, F. Cinti, P. Jain, G. Pupillo, and T. Pohl, Supersolid vortex crystals in Rydberg-dressed Bose-Einstein condensates, Phys. Rev. Lett., 2012, 108(26): 265301ADSGoogle Scholar
  17. 17.
    M. Robert-de-Saint-Vincent, C. S. Hofmann, H. Schempp, G. Günter, S. Whitlock, and M. Weidemüller, Spontaneous avalanche ionization of a strongly blockaded Rydberg gas, Phys. Rev. Lett., 2013, 110(4): 045004ADSGoogle Scholar
  18. 18.
    G. Bannasch, T. C. Killian, and T. Pohl, Strongly coupled plasmas via Rydberg blockade of cold atoms, Phys. Rev. Lett., 2013, 110(25): 253003ADSGoogle Scholar
  19. 19.
    Y. O. Dudin and A. Kuzmich, Strongly interacting Rydberg excitations of a cold atomic gas, Science, 2012, 336(6083): 887ADSGoogle Scholar
  20. 20.
    T. Peyronel, O. Firstenberg, Q. Y. Liang, S. Hofferberth, A. V. Gorshkov, T. Pohl, M. D. Lukin, and V. Vuletić, Quantum nonlinear optics with single photons enabled by strongly interacting atoms, Nature, 2012, 488(7409): 57ADSGoogle Scholar
  21. 21.
    D. Maxwell, D. J. Szwer, D. Paredes-Barato, H. Busche, J. D. Pritchard, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, Storage and control of optical photons using Rydberg polaritons, Phys. Rev. Lett., 2013, 110(10): 103001ADSGoogle Scholar
  22. 22.
    C. S. Hofmann, G. Günter, H. Schempp, M. Robertde-Saint-Vincent, M. Gärttner, J. Evers, S. Whitlock, and M. Weidemüller, Sub-poissonian statistics of Rydberginteracting dark-state polaritons, Phys. Rev. Lett., 2013, 110(20): 203601ADSGoogle Scholar
  23. 23.
    S. Sevinçli, N. Henkel, C. Ates, and T. Pohl, Nonlocal nonlinear optics in cold Rydberg gases, Phys. Rev. Lett., 2011, 107(15): 153001ADSGoogle Scholar
  24. 24.
    W. Ketterle, D. Durfee, and D. Stamper-Kurn, Bose-Einstein Condensation in Atomic Gases: Proceedings of the International School of Physics “Enrico Fermi” Course CXI chapter Making, probing and understanding Bose-Einstein condensates, IOS Press, 1999: 67–176Google Scholar
  25. 25.
    W. Ketterle and M. W. Zwierlein, Ultra-Cold Fermi Gases: Proceedings of the International School of Physics “Enrico Fermi”, Course ClXIV chapter Making, probing and understanding ultracold Fermi gases, Amsterdam: IOS Press, 2008: 95–287Google Scholar
  26. 26.
    R. Löw, H. Weimer, J. Nipper, J. B. Balewski, B. Butscher, H. P. Büchler, and T. Pfau, An experimental and theoretical guide to strongly interacting Rydberg gases, J. Phys. B: At. Mol. Opt. Phys., 2012, 45(11): 113001ADSGoogle Scholar
  27. 27.
    H. Saßmannshausen, F. Merkt, and J. Deiglmayr, Highresolution spectroscopy of Rydberg states in an ultracold cesium gas, Phys. Rev. A, 2013, 87(3): 032519ADSGoogle Scholar
  28. 28.
    M. S. O’Sullivan and B. P. Stoicheff, Scalar polarizabilities and avoided crossings of high Rydberg states in Rb, Phys. Rev. A, 1985, 31(4): 2718ADSGoogle Scholar
  29. 29.
    I. I. Beterov, I. I. Ryabtsev, D. B. Tretyakov, and V. Entin, Quasiclassical calculations of blackbody-radiation-induced depopulation rates and effective lifetimes of Rydberg nS, nP, and nD alkali-metal atoms with n ⩽ 80, Phys. Rev. A, 2009, 79(5): 052504ADSGoogle Scholar
  30. 30.
    T. Vogt, M. Viteau, J. Zhao, A. Chotia, D. Comparat, and P. Pillet, Dipole blockade at Förster resonances in high resolution laser excitation of Rydberg states of cesium atoms, Phys. Rev. Lett., 2006, 97(8): 083003ADSGoogle Scholar
  31. 31.
    S. Westermann, T. Amthor, A. L. de Oliveira, J. Deiglmayr, M. Reetz-Lamour, and M. Weidemüller, Dynamics of resonant energy transfer in a cold Rydberg gas, Eur. Phys. J. D, 2006, 40(1): 37ADSGoogle Scholar
  32. 32.
    I. I. Ryabtsev, D. B. Tretyakov, I. I. Beterov, and V. M. Entin, Observation of the Stark-tuned Förster resonance between two Rydberg atoms, Phys. Rev. Lett., 2010, 104(7): 073003ADSGoogle Scholar
  33. 33.
    J. Nipper, J. B. Balewski, A. T. Krupp, S. Hofferberth, R. Löw, and T. Pfau, Atomic pair-state interferometer: Controlling and measuring an interaction-induced phase shift in Rydberg-atom pairs, Phys. Rev. X, 2012, 2(3): 031011Google Scholar
  34. 34.
    J. H. Gurian, P. Cheinet, P. Huillery, A. Fioretti, J. Zhao, P. L. Gould, D. Comparat, and P. Pillet, Observation of a resonant four-body interaction in cold cesium Rydberg atoms, Phys. Rev. Lett., 2012, 108(2): 023005ADSGoogle Scholar
  35. 35.
    O. Mülken, A. Blumen, T. Amthor, C. Giese, M. Reetz-Lamour, and M. Weidemüller, Survival probabilities in coherent exciton transfer with trapping, Phys. Rev. Lett., 2007, 99(9): 090601Google Scholar
  36. 36.
    K. Dieckmann, R. J. C. Spreeuw, M. Weidemüller, and J. Walraven, Two-dimensional magneto-optical trap as a source of slow atoms, Phys. Rev. A, 1998, 58(5): 3891ADSGoogle Scholar
  37. 37.
    J. Schoser, A. Batär, R. Löw, V. Schweikhard, A. Grabowski, Y. Ovchinnikov, and T. Pfau, Intense source of cold Rb atoms from a pure two-dimensional magneto-optical trap, Phys. Rev. A, 2002, 66(2): 023410ADSGoogle Scholar
  38. 38.
    J. Catani, P. Maioli, L. D. Sarlo, F. Minardi, and M. Inguscio, Intense slow beams of bosonic potassium isotopes, Phys. Rev. A, 2006, 73(3): 033415ADSGoogle Scholar
  39. 39.
    S. Chaudhuri, S. Roy, and C. S. Unnikrishnan, Realization of an intense cold Rb atomic beam based on a two-dimensional magneto-optical trap: Experiments and comparison with simulations, Phys. Rev. A, 2006, 74(2): 023406ADSGoogle Scholar
  40. 40.
    R. Dubessy, K. Merloti, L. Longchambon, P.E. Pottie, T. Liennard, A. Perrin, V. Lorent, and H. Perrin, Rubidium-87 Bose-Einstein condensate in an optically plugged quadrupole trap, Phys. Rev. A, 2012, 85(1): 013643ADSGoogle Scholar
  41. 41.
    P. A. Altin, N. P. Robins, D. Döring, J. E. Debs, R. Poldy, C. Figl, and J. D. Close, 85Rb tunable-interaction Bose-Einstein condensate machine, Rev. Sci. Instrum., 2010, 81(6): 063103ADSGoogle Scholar
  42. 42.
    Y. J. Lin, A. R. Perry, R. L. Compton, I. Spielman, and J. Porto, Rapid production of 87Rb Bose-Einstein condensates in a combined magnetic and optical potential, Phys. Rev. A, 2009, 2009(6): 063631ADSGoogle Scholar
  43. 43.
    J. Fortágh and C. Zimmermann, Magnetic microtraps for ultracold atoms, Rev. Mod. Phys., 2007, 79(1): 235ADSGoogle Scholar
  44. 44.
    J. Reichel and V. Vuletic, Atom Chips, Wiley-VCH Verlag GmbH & Co. KGaA, 2011Google Scholar
  45. 45.
    C. S. Hofmann, et al., Combined optical and matterbased probing of Rydberg electromagnetically induced transparency, 2013 (to be published)Google Scholar
  46. 46.
    T. G. Tiecke, S. D. Gensemer, A. Ludewig, and J. Walraven, High-flux two-dimensional magneto-optical-trap source for cold lithium atoms, Phys. Rev. A, 2009, 80(1): 013409ADSGoogle Scholar
  47. 47.
    We use ALVASOURCES from Alvatec, which are chromatefree metal vapor sources of the type AS-3-Rb87(98%)-20-FGoogle Scholar
  48. 48.
    S. Götz, B. Höltkemeier, C. S. Hofmann, D. Litsch, B. D. DePaola, and M. Weidemüller, Versatile cold atom target apparatus, Rev. Sci. Instrum., 2012, 83(7): 073112ADSGoogle Scholar
  49. 49.
    D. Jacob, E. Mimoun, L. D. Sarlo, M. Weitz, J. Dalibard, and F. Gerbier, Production of sodium Bose-Einstein condensates in an optical dimple trap, New J. Phys., 2011, 13(6): 065022ADSGoogle Scholar
  50. 50.
    J. F. Clément, J. P. Brantut, M. Robert-de-Saint-Vincent, R. A. Nyman, A. Aspect, T. Bourdel, and P. Bouyer, Alloptical runaway evaporation to Bose-Einstein condensation, Phys. Rev. A, 2009, 79(6): 061406ADSGoogle Scholar
  51. 51.
    T. Weber, J. Herbig, M. Mark, H.-C. Nägerl, and R. Grimm, Bose-Einstein condensation of cesium, Science, 2002, 299(5604): 232ADSGoogle Scholar
  52. 52.
    M. Zaiser, J. Hartwig, D. Schlippert, U. Velte, N. Winter, V. Lebedev, W. Ertmer, and E. M. Rasel, Simple method for generating Bose-Einstein condensates in a weak hybrid trap, Phys. Rev. A, 2011, 83(3): 035601ADSGoogle Scholar
  53. 53.
    S. J. M. Kuppens, K. L. Corwin, K. W. Miller, T. E. Chupp, and C. E. Wieman, Loading an optical dipole trap, Phys. Rev. A, 2000, 62(1): 013406ADSGoogle Scholar
  54. 54.
    C. G. Townsend, N. H. Edwards, K. P. Zetie, C. Cooper, J. Rink, and C. Foot, High-density trapping of cesium atoms in a dark magneto-optical trap, Phys. Rev. A, 1996, 53(3): 1702ADSGoogle Scholar
  55. 55.
    K. M. O’Hara, M. E. Gehm, S. R. Granade, and J. Thomas, Scaling laws for evaporative cooling in time-dependent optical traps, Phys. Rev. A, 2001, 64(5): 051403ADSGoogle Scholar
  56. 56.
    T. Lauber, J. Küber, O. Wille, and G. Birkl, Optimized Bose-Einstein-condensate production in a dipole trap based on a 1070-nm multi-frequency laser: Influence of enhanced two-body loss on the evaporation process, Phys. Rev. A, 2011, 84(4): 043641ADSGoogle Scholar
  57. 57.
    A. Tauschinsky, R. M. T. Thijssen, S. Whitlock, H. B. van Linden van den Heuvell, and R. J. C. Spreeuw, Spatially resolved excitation of Rydberg atoms and surface effects on an atom chip, Phys. Rev. A, 2010, 81(6): 063411ADSGoogle Scholar
  58. 58.
    H. Hattermann, M. Mack, F. Karlewski, F. Jessen, D. Cano, and J. Fortágh, Detrimental adsorbate fields in experiments with cold Rydberg gases near surfaces, Phys. Rev. A, 2012, 86(2): 022511ADSGoogle Scholar
  59. 59.
    M. Fleischhauer, A. Imamoglu, and J. Marangos, Electromagnetically induced transparency: Optics in coherent media, Rev. Mod. Phys., 2005, 77(2): 633ADSGoogle Scholar
  60. 60.
    J. D. Pritchard, D. Maxwell, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, Cooperative atom-light interaction in a blockaded Rydberg ensemble, Phys. Rev. Lett., 2010, 105(19): 193603ADSGoogle Scholar
  61. 61.
    H. Schempp, G. Günter, C. S. Hofmann, C. Giese, S. D. Saliba, B. D. DePaola, T. Amthor, M. Weidemüller, S. Sevinçli, and T. Pohl, Coherent population trapping with controlled interparticle interactions, Phys. Rev. Lett., 2010, 104(17): 173602ADSGoogle Scholar
  62. 62.
    S. Sevinçli, C. Ates, T. Pohl, H. Schempp, C. S. Hofmann, G. Günter, T. Amthor, M. Weidemüller, J. D. Pritchard, D. Maxwell, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, Quantum interference in interacting threelevel Rydberg gases: Coherent population trapping and electromagnetically induced transparency, J. Phys. B: At. Mol. Opt. Phys., 2011, 44(18): 184018ADSGoogle Scholar
  63. 63.
    R. H. Dicke, Coherence in spontaneous radiation processes, Phys. Rev., 1954, 93(1): 99MATHADSGoogle Scholar
  64. 64.
    R. Heidemann, U. Raitzsch, V. Bendkowsky, B. Butscher, R. Löw, L. Santos, and T. Pfau, Evidence for coherent collective Rydberg excitation in the strong blockade regime, Phys. Rev. Lett., 2007, 99(16): 163601ADSGoogle Scholar
  65. 65.
    A. Gaëtan, Y. Miroshnychenko, T. Wilk, A. Chotia, M. Viteau, D. Comparat, P. Pillet, A. Browaeys, and P. Grangier, Observation of collective excitation of two individual atoms in the Rydberg blockade regime, Nat. Phys., 2009, 5(2): 115Google Scholar
  66. 66.
    E. Urban, T. A. Johnson, T. Henage, L. Isenhower, D. D. Yavuz, T. G. Walker, and M. Saffman, Observation of Rydberg blockade between two atoms, Nat. Phys., 2009, 5(2): 110Google Scholar
  67. 67.
    Y. O. Dudin, L. Li, F. Bariani, and A. Kuzmich, Observation of coherent many-body Rabi oscillations, Nat. Phys., 2012, 8(11): 790Google Scholar
  68. 68.
    D. Tong, S. M. Farooqi, J. Stanojevic, S. Krishnan, Y. P. Zhang, R. Côté, E. E. Eyler, and P. L. Gould, Local blockade of Rydberg excitation in an ultracold gas, Phys. Rev. Lett., 2004, 93(6): 063001ADSGoogle Scholar
  69. 69.
    K. Singer, M. Reetz-Lamour, T. Amthor, L. G. Marcassa, and M. Weidemüller, Suppression of excitation and spectral broadening induced by interactions in a cold gas of Rydberg atoms, Phys. Rev. Lett., 2004, 93(16): 163001ADSGoogle Scholar
  70. 70.
    T. Vogt, M. Viteau, A. Chotia, J. Zhao, D. Comparat, and P. Pillet, Electric-field induced dipole blockade with Rydberg atoms, Phys. Rev. Lett., 2007, 99(7): 073002ADSGoogle Scholar
  71. 71.
    A. Reinhard, K. C. Younge, and G. Raithel, Effect of Foerster resonances on the excitation statistics of many-body Rydberg systems, Phys. Rev. A, 2008, 78: 060702(R)ADSGoogle Scholar
  72. 72.
    M. Viteau, P. Huillery, M. G. Bason, N. Malossi, D. Ciampini, O. Morsch, E. Arimondo, D. Comparat, and P. Pillet, Cooperative excitation and many-body interactions in a cold Rydberg gas, Phys. Rev. Lett., 2012, 109(5): 053002ADSGoogle Scholar
  73. 73.
    M. P. Robinson, B. L. Tolra, M. W. Noel, T. Gallagher, and P. Pillet, Spontaneous evolution of Rydberg atoms into an ultracold plasma, Phys. Rev. Lett., 2000, 85(21): 4466ADSGoogle Scholar
  74. 74.
    T. C. Killian, Ultracold neutral plasmas, Science, 2007, 316(5825): 705ADSGoogle Scholar
  75. 75.
    W. Li, M. W. Noel, M. P. Robinson, P. Tanner, T. Gallagher, D. Comparat, B. Laburthe Tolra, N. Vanhaecke, T. Vogt, N. Zahzam, P. Pillet, and D. Tate, Evolution dynamics of a dense frozen Rydberg gas to plasma, Phys. Rev. A, 2004, 70(4): 042713ADSGoogle Scholar
  76. 76.
    A. Walz-Flannigan, J. R. Guest, J. H. Choi, and G. Raithel, Cold-Rydberg-gas dynamics, Phys. Rev. A, 2004, 69(6): 063405ADSGoogle Scholar
  77. 77.
    J. P. Morrison, C. J. Rennick, J. S. Keller, and E. Grant, Evolution from a molecular Rydberg gas to an ultracold plasma in a seeded supersonic expansion of NO, Phys. Rev. Lett., 2008, 101(20): 205005ADSGoogle Scholar
  78. 78.
    B. A. Remington, D. Arnett, R. Paul, Drake, and H. Takabe, Modeling astrophysical phenomena in the laboratory with intense lasers, Science, 1999, 284(5419): 1488ADSGoogle Scholar
  79. 79.
    H. M. Van Horn, Dense astrophysical plasmas, Science, 1991, 252(5004): 384ADSGoogle Scholar
  80. 80.
    E. Shuryak, Physics of strongly coupled quark-gluon plasma, Prog. Part. Nucl. Phys., 2009, 62(1): 48ADSGoogle Scholar
  81. 81.
    S. Ichimaru, Strongly coupled plasmas: High-density classical plasmas and degenerate electron liquids, Rev. Mod. Phys., 1982, 54(4): 1017ADSGoogle Scholar
  82. 82.
    T. C. Killian, T. Pattard, T. Pohl, and J. M. Rost, Ultracold neutral plasmas, Phys. Rep., 2007, 449(4–5): 77ADSGoogle Scholar
  83. 83.
    C. E. Simien, Y. C. Chen, P. Gupta, S. Laha, Y. Martinez, P. Mickelson, S. Nagel, and T. Killian, Using absorption imaging to study ion dynamics in an ultracold neutral plasma, Phys. Rev. Lett., 2004, 92(14): 143001ADSGoogle Scholar
  84. 84.
    E. A. Cummings, J. E. Daily, D. S. Durfee, and S. Bergeson, Fluorescence measurements of expanding strongly coupled neutral plasmas, Phys. Rev. Lett., 2005, 95(23): 235001ADSGoogle Scholar
  85. 85.
    S. G. Kuzmin and T. M. O’Neil, Numerical simulation of ultracold plasmas: How rapid intrinsic heating limits the development of correlation, Phys. Rev. Lett., 2002, 88(6): 065003ADSGoogle Scholar
  86. 86.
    T. Pohl, T. Pattard, and J. M. Rost, Kinetic modeling and molecular dynamics simulation of ultracold neutral plasmas including ionic correlations, Phys. Rev. A, 2004, 70(3): 033416ADSGoogle Scholar
  87. 87.
    S. D. Bergeson, A. Denning, M. Lyon, and F. Robicheaux, Density and temperature scaling of disorder-induced heating in ultracold plasmas, Phys. Rev. A, 2011, 83(2): 023409ADSGoogle Scholar
  88. 88.
    I. I. Beterov, D. B. Tretyakov, I. I. Ryabtsev, A. Ekers, and N. Bezuglov, Ionization of sodium and rubidium nS, nP, and nD Rydberg atoms by blackbody radiation, Phys. Rev. A, 2007, 75(5): 052720ADSGoogle Scholar
  89. 89.
    L. Barbier and M. Cheret, Experimental study of penning and Hornbeck-Molnar ionisation of rubidium atoms excited in a high s or d level (5d⩽ nl⩽11s), J. Phys. B: At. Mol. Opt. Phys., 1987, 20(6): 1229ADSGoogle Scholar
  90. 90.
    A. Kumar, B. C. Sahaa, C. A. Weatherforda, and S. K. Verma, A systematic study of Hornbeck Molnar ionization involving Rydberg alkali atoms, J. Mol. Struct. Theochem., 1999, 487(1–2): 1Google Scholar
  91. 91.
    M. S. Murillo, Using Fermi statistics to create strongly coupled ion plasmas in atom traps, Phys. Rev. Lett., 2001, 87(11): 115003ADSGoogle Scholar
  92. 92.
    P. K. Shukla and K. Avinash, Phase coexistence and a critical point in ultracold neutral plasmas, Phys. Rev. Lett., 2011, 107(13): 135002ADSGoogle Scholar
  93. 93.
    L. Mandel, Sub-Poissonian photon statistics in resonance fluorescence, Opt. Lett., 1979, 4(7): 205ADSGoogle Scholar
  94. 94.
    S. Wüster, J. Stanojevic, C. Ates, T. Pohl, P. Deuar, J. F. Corney, and J. M. Rost, Correlations of Rydberg excitations in an ultracold gas after an echo sequence, Phys. Rev. A, 2010, 81(2): 023406ADSGoogle Scholar
  95. 95.
    D. Breyel, T. L. Schmidt, and A. Komnik, Rydberg crystallization detection by statistical means, Phys. Rev. A, 2012, 86(2): 023405ADSGoogle Scholar
  96. 96.
    M. Gärttner, K. P. Heeg, T. Gasenzer, and J. Evers, Optimal self-assembly of Rydberg excitations for quantum gate operations, Phys. Rev. A, 2013, 88(4): 043410ADSGoogle Scholar
  97. 97.
    M. Fleischhauer and M. D. Lukin, Dark-state polaritons in electromagnetically induced transparency, Phys. Rev. Lett., 2000, 84(22): 5094ADSGoogle Scholar
  98. 98.
    C. Ates, T. Pohl, T. Pattard, and J. M. Rost, Strong interaction effects on the atom counting statistics of ultracold Rydberg gases, J. Phys. B: At. Mol. Opt. Phys., 2006, 39(11): L233ADSGoogle Scholar
  99. 99.
    H. Schempp, G. Günter, M. Robert-de-Saint-Vincent, C. S. Hofmann, D. Breyel, A. Komnik, D. W. Schönleber, M. Gärttner, J. Evers, S. Whitlock, and M. Weidemüller, Full counting statistics of laser excited Rydberg aggregates in a one-dimensional geometry, arXiv: 1308.0264, 2013Google Scholar
  100. 100.
    D. Petrosyan, J. Otterbach, and M. Fleischhauer, Electromagnetically induced transparency with Rydberg atoms, Phys. Rev. Lett., 2011, 107(21): 213601ADSGoogle Scholar
  101. 101.
    V. Parigi, E. Bimbard, J. Stanojevic, A. J. Hilliard, F. Nogrette, R. Tualle-Brouri, A. Ourjoumtsev, and P. Grangier, Observation and measurement of interaction-induced dispersive optical nonlinearities in an ensemble of cold Rydberg atoms, Phys. Rev. Lett., 2012, 109(23): 233602ADSGoogle Scholar
  102. 102.
    E. Shahmoon, G. Kurizki, M. Fleischhauer, and D. Petrosyan, Strongly interacting photons in hollow-core waveguides, Phys. Rev. A, 2011, 83(3): 033806ADSGoogle Scholar
  103. 103.
    A. V. Gorshkov, J. Otterbach, M. Fleischhauer, T. Pohl, and M. D. Lukin, Photon-photon interactions via Rydberg blockade, Phys. Rev. Lett., 2011, 107(13): 133602ADSGoogle Scholar
  104. 104.
    M. Fleischhauer, J. Otterbach, and R. G. Unanyan, Bose-Einstein condensation of stationary-light polaritons, Phys. Rev. Lett., 2008, 101(16): 163601ADSGoogle Scholar
  105. 105.
    G. Nikoghosyan, F. E. Zimmer, and M. B. Plenio, Dipolar Bose-Einstein condensate of dark-state polaritons, Phys. Rev. A, 2012, 86(2): 023854ADSGoogle Scholar
  106. 106.
    J. Honer, R. Löw, H. Weimer, T. Pfau, and H. P. Büchler, Artificial atoms can do more than atoms: Deterministic single photon subtraction from arbitrary light fields, Phys. Rev. Lett., 2011, 107(9): 093601ADSGoogle Scholar
  107. 107.
    J. Stanojevic, V. Parigi, E. Bimbard, A. Ourjoumtsev, P. Pillet, and P. Grangier, Generating non-Gaussian states using collisions between Rydberg polaritons, Phys. Rev. A, 2012, 86(2): 021403ADSGoogle Scholar
  108. 108.
    I. Friedler, D. Petrosyan, M. Fleischhauer, and G. Kurizki, Long-range interactions and entanglement of slow singlephoton pulses, Phys. Rev. A, 2005, 72(4): 043803ADSGoogle Scholar
  109. 109.
    D. Petrosyan and M. Fleischhauer, Quantum information processing with single photons and atomic ensembles in microwave coplanar waveguide resonators, Phys. Rev. Lett., 2008, 100(17): 170501ADSGoogle Scholar
  110. 110.
    G. Günter, M. Robert-de-Saint-Vincent, H. Schempp, C. S. Hofmann, S. Whitlock, and M. Weidemüller, Interaction enhanced imaging of individual Rydberg atoms in dense gases, Phys. Rev. Lett., 2012, 108(1): 013002ADSGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Physikalisches InstitutUniversität HeidelbergHeidelbergGermany

Personalised recommendations