Frontiers of Physics

, Volume 8, Issue 5, pp 475–490 | Cite as

Optomechanical sensing with on-chip microcavities

  • Yi-Wen Hu
  • Yun-Feng Xiao
  • Yong-Chun Liu
  • Qihuang Gong
Review Article Frontiers of Physics

Abstract

The coupling between optical and mechanical degrees of freedom has been of broad interest for a long time. However, it is only until recently, with the rapid development of optical microcavity research, that we are able to manipulate and utilize this coupling process. When a high Q microcavity couples to a mechanical resonator, they can consolidate into an optomechanical system. Benefitting from the unique characteristics offered by optomechanical coupling, this hybrid system has become a promising platform for ultrasensitive sensors to detect displacement, mass, force and acceleration. In this review, we introduce the basic physical concepts of cavity optomechanics, and describe some of the most typical experimental cavity optomechanical systems for sensing applications. Finally, we discuss the noise arising from various sources and show the potentiality of optomechanical sensing towards quantum-noise-limited detection.

Keywords

optical microcavities mechanical resonators cavity optomechanics optical sensing integrated photonics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and notes

  1. 1.
    J. Kepler, De Cometis, 1619Google Scholar
  2. 2.
    Actually Kepler’s conjecture is not fully accurate. From the viewpoint of modern astronomy, the formation and deflection of comet tails are due to the forces from both radiation pressure and solar wind.Google Scholar
  3. 3.
    A. Ashkin, History of optical trapping and manipulation of small-neutral particle, atoms, and molecules, IEEE J. Sel. Top. Quantum Electron., 2000, 6(6): 841Google Scholar
  4. 4.
    V. B. Braginsky and A. B. Manukin, Measurement of weak forces in physics experiments, Chicago: University of Chicago Press, 1977Google Scholar
  5. 5.
    K. J. Vahala, Optical microcavities, Nature, 2003, 424(6950): 839ADSGoogle Scholar
  6. 6.
    J. Ma and M. L. Povinelli, Applications of optomechanical effects for on-chip manipulation of light signals, Curr. Opin. Solid State Mater. Sci., 2012, 16(2): 82Google Scholar
  7. 7.
    H. Cai, K. Xu, A. Liu, Q. Fang, M. Yu, G. Lo, and D. Kwong, Nano-opto-mechanical actuator driven by gradient optical force, Appl. Phys. Lett., 2012, 100(1): 013108ADSGoogle Scholar
  8. 8.
    X. Guo, C. L. Zou, X. F. Ren, F. W. Sun, and G. C. Guo, Broadband opto-mechanical phase shifter for photonic integrated circuits, Appl. Phys. Lett., 2012, 101(7): 071114ADSGoogle Scholar
  9. 9.
    T. J. Kippenberg and K. J. Vahala, Cavity opto-mechanics, Opt. Express, 2007, 15(25): 17172ADSGoogle Scholar
  10. 10.
    T. J. Kippenberg and K. J. Vahala, Cavity optomechanics: Back-action at the mesoscale, Science, 2008, 321(5893): 1172ADSGoogle Scholar
  11. 11.
    A. A. Clerk, M. H. Devoret, S. M. Girvin, F. Marquardt, and R. J. Schoelkopf, Introduction to quantum noise, measurement, and amplification, Rev. Mod. Phys., 2010, 82(2): 1155MathSciNetADSMATHGoogle Scholar
  12. 12.
    P. Meystre, A short walk through quantum optomechanics, Annalen der Physik, 2013, 525(3): 215ADSMATHGoogle Scholar
  13. 13.
    M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Cavity optomechanics, arXiv: 1303.0733, 2013Google Scholar
  14. 14.
    D. Van Thourhout and J. Roels, Optomechanical device actuation through the optical gradient force, Nat. Photonics, 2010, 4(4): 211ADSGoogle Scholar
  15. 15.
    L. Atzori, A. Iera, and G. Morabito, The internet of things: A survey, Comput. Netw., 2010, 54(15): 2787MATHGoogle Scholar
  16. 16.
    A. B. Matsko, Practical Applications of Microresonators in Optics and Photonics, CRC Press, 2009Google Scholar
  17. 17.
    D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Ultra-high-Q toroid microcavity on a chip, Nature, 2003, 421(6926): 925ADSGoogle Scholar
  18. 18.
    B. B. Li, Y. F. Xiao, C. L. Zou, X. F. Jiang, Y. C. Liu, F. W. Sun, Y. Li, and Q. Gong, Experimental controlling of Fano resonance in indirectly coupled whispering-gallery microresonators, Appl. Phys. Lett., 2012, 100(2): 021108ADSGoogle Scholar
  19. 19.
    Z. P. Liu, X. F. Jiang, Y. Li, Y. F. Xiao, L. Wang, J. L. Ren, S. J. Zhang, H. Yang, and Q. Gong, High-Q asymmetric polymer microcavities directly fabricated by two-photon polymerization, Appl. Phys. Lett., 2013, 102(22): 221108ADSGoogle Scholar
  20. 20.
    Y.-F. Xiao, X.-F. Jiang, Q.-F. Yang, L. Wang, K. Shi, Y. Li, and Q. Gong, Tunneling-induced transparency in a chaotic microcavity, Laser & Photonics Reviews, 2013, 7(5): L51Google Scholar
  21. 21.
    S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, Whispering-gallery mode microdisk lasers, Appl. Phys. Lett., 1992, 60: 289ADSGoogle Scholar
  22. 22.
    H. J. Moon, Y. T. Chough, and K. An, Cylindrical microcavity laser based on the evanescent-wave-coupled gain, Phys. Rev. Lett., 2000, 85(15): 3161ADSGoogle Scholar
  23. 23.
    X. F. Jiang, Y. F. Xiao, C. L. Zou, L. He, C. H. Dong, B. B. Li, Y. Li, F. W. Sun, L. Yang, and Q. Gong, Highly unidirectional emission and ultralow-threshold lasing from onchip ultrahigh-Q microcavities, Adv. Mater., 2012, 24(35): OP260Google Scholar
  24. 24.
    L. He, S. K. Özdemir, and L. Yang, Whispering gallery microcavity lasers, Laser & Photonics Reviews, 2013, 7: 60Google Scholar
  25. 25.
    B. B. Li, Y. F. Xiao, M. Y. Yan, W. R. Clements, and Q. Gong, Low-threshold Raman laser from an on-chip, high-Q, polymer-coated microcavity, Opt. Lett., 2013, 38(11): 1802ADSGoogle Scholar
  26. 26.
    Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, Micrometre-scale silicon electro-optic modulator, Nature, 2005, 435(7040): 325ADSGoogle Scholar
  27. 27.
    H. Rokhsari and K. J. Vahala, Ultralow loss, high Q, four port resonant couplers for quantum optics and photonics, Phys. Rev. Lett., 2004, 92(25): 253905ADSGoogle Scholar
  28. 28.
    H. Lee, T. Chen, J. Li, O. Painter, and K. J. Vahala, Ultralow-loss optical delay line on a silicon chip, Nat. Commun., 2012, 3: 867ADSGoogle Scholar
  29. 29.
    V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, All-optical control of light on a silicon chip, Nature, 2004, 431(7012): 1081ADSGoogle Scholar
  30. 30.
    J. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. He, D. R. Chen, and L. Yang, On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator, Nat. Photonics, 2009, 4(1): 46ADSGoogle Scholar
  31. 31.
    F. Vollmer and S. Arnold, Whispering-gallery-mode biosensing: Label-free detection down to single molecules, Nat. Methods, 2008, 5(7): 591Google Scholar
  32. 32.
    X. Yi, Y. F. Xiao, Y. C. Liu, B. B. Li, Y. L. Chen, Y. Li, and Q. Gong, Multiple-Rayleigh-scatterer-induced mode splitting in a high-Q whispering-gallery-mode microresonator, Phys. Rev. A, 2011, 83(2): 023803ADSGoogle Scholar
  33. 33.
    F. Vollmer and L. Yang, Review Label-free detection with high-Q microcavities: A review of biosensing mechanisms for integrated devices, Nanophotonics, 2012, 1(3–4): 267ADSGoogle Scholar
  34. 34.
    L. Shao, X. F. Jiang, X. C. Yu, B. B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. F. Xiao, and Q. Gong, Detection of single nanoparticles and lentiviruses using microcavity resonance broadening, Adv. Mater., 2013, DOI: 10.1002/adma201302572Google Scholar
  35. 35.
    A. N. Cleland and M. L. Roukes, A nanometre-scale mechanical electrometer, Nature, 1998, 392: 160ADSGoogle Scholar
  36. 36.
    K. Jensen, K. Kim, and A. Zettl, An atomic-resolution nanomechanical mass sensor, Nat. Nanotechnol., 2008, 3(9): 533ADSGoogle Scholar
  37. 37.
    J. L. Arlett, E. B. Myers, and M. L. Roukes, Comparative advantages of mechanical biosensors, Nat. Nanotechnol., 2011, 6(4): 203ADSGoogle Scholar
  38. 38.
    U. Krishnamoorthy, G. R. III Olsson, M. Bogart, D. Baker, T. Carr, T. P. Swiler, and P. Clews, In-plane MEMS-based nano-g accelerometer with sub-wavelength optical resonant sensor, Sens. Actuators A Phys., 2008, 145: 283Google Scholar
  39. 39.
    M. O. Scully and M. S. Zubairy, Quantum Optics, Cambridge: Cambridge University Press, 1997Google Scholar
  40. 40.
    A. N. Cleland, Foundations of Nanomechanics: From Solid-State Theory to Device Applications, Springer-Verlag, 2003Google Scholar
  41. 41.
    C. Gardiner and P. Zoller, Quantum Noise, Springer, 2004MATHGoogle Scholar
  42. 42.
    J. Rosenberg, Q. Lin, and O. Painter, Static and dynamic wavelength routing via the gradient optical force, Nat. Photonics, 2009, 3(8): 478ADSGoogle Scholar
  43. 43.
    B. S. Sheard, M. B. Gray, C. M. Mow-Lowry, D. E. McClelland, and S. E. Whitcomb, Observation and characterization of an optical spring, Phys. Rev. A, 2004, 69(5): 051801ADSGoogle Scholar
  44. 44.
    A. Baas, J. P. Karr, H. Eleuch, and E. Giacobino, Optical bistability in semiconductor microcavities, Phys. Rev. A, 2004, 69(2): 023809ADSGoogle Scholar
  45. 45.
    Y. F. Yu, J. B. Zhang, T. Bourouina, and A. Q. Liu, Optical-force-induced bistability in nanomachined ring resonator systems, Appl. Phys. Lett., 2012, 100(9): 093108ADSGoogle Scholar
  46. 46.
    G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, Controlling photonic structures using optical forces, Nature, 2009, 462(7273): 633ADSGoogle Scholar
  47. 47.
    A. Schliesser, P. Del’Haye, N. Nooshi, K. J. Vahala, and T. J. Kippenberg, Radiation pressure cooling of a micromechanical oscillator using dynamical backaction, Phys. Rev. Lett., 2006, 97(24): 243905ADSGoogle Scholar
  48. 48.
    O. Arcizet, P. F. Cohadon, T. Briant, M. Pinard, and A. Heidmann, Radiation-pressure cooling and optomechanical instability of a micromirror, Nature, 2006, 444(7115): 71ADSGoogle Scholar
  49. 49.
    Y. C. Liu, Y. F. Xiao, X. Luan, and C. W. Wong, Dynamic dissipative cooling of a mechanical resonator in strong coupling optomechanics, Phys. Rev. Lett., 2013, 110(15): 153606ADSGoogle Scholar
  50. 50.
    T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode, Phys. Rev. Lett., 2005, 94(22): 223902ADSGoogle Scholar
  51. 51.
    T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity, Phys. Rev. Lett., 2005, 95(3): 033901ADSGoogle Scholar
  52. 52.
    K. Zandi, B. Wong, J. Zou, R. V. Kruzelecky, W. Jamroz, and Y. A. Peter, In-plane silicon-on-insulator optical MEMS accelerometer using waveguide fabry-perot microcavity with silicon/air bragg mirrors, in: IEEE 23rd International Conference on Micro Electro Mechanical Systems, IEEE, 2010: 839–842Google Scholar
  53. 53.
    M. W. Pruessner, T. H. Stievater, J. B. Khurgin, and W. S. Rabinovich, Integrated waveguide-DBR microcavity optomechanical system, Opt. Express, 2011, 19(22): 21904ADSGoogle Scholar
  54. 54.
    B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, Ultra-compact Si-SiO2 microring resonator optical channel dropping filters, IEEE Photon. Technol. Lett., 1998, 10(4): 549ADSGoogle Scholar
  55. 55.
    F. Xia, M. Rooks, L. Sekaric, and Y. Vlasov, Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on-chip optical interconnects, Opt. Express, 2007, 15(19): 11934ADSGoogle Scholar
  56. 56.
    W. H. P. Pernice, M. Li, and H. X. Tang, Optomechanical coupling in photonic crystal supported nanomechanical waveguides, Opt. Express, 2009, 17(15): 12424ADSGoogle Scholar
  57. 57.
    M. Li, W. H. P. Pernice, and H. X. Tang, Ultrahigh-frequency nano-optomechanical resonators in slot waveguide ring cavities, Appl. Phys. Lett., 2010, 97(18): 183110ADSGoogle Scholar
  58. 58.
    A. N. Oraevsky, Whispering-gallery waves, Quantum Electron., 2002, 32(5): 377ADSGoogle Scholar
  59. 59.
    A. B. Matsko and V. S. Ilchenko, Optical resonators with whispering-gallery modes-part I: basics, IEEE J. Sel. Top. Quantum Electron., 2006, 12(1): 3Google Scholar
  60. 60.
    G. Anetsberger, R. Rivi’ere, A. Schliesser, O. Arcizet, and T. J. Kippenberg, Ultralow-dissipation optomechanical resonators on a chip, Nat. Photonics, 2008, 2(10): 627Google Scholar
  61. 61.
    Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, Mechanical oscillation and cooling actuated by the optical gradient force, Phys. Rev. Lett., 2009, 103(10): 103601ADSGoogle Scholar
  62. 62.
    X. Jiang, Q. Lin, J. Rosenberg, K. Vahala, and O. Painter, High-Q double-disk microcavities for cavity optomechanics, Opt. Express, 2009, 17(23): 20911ADSGoogle Scholar
  63. 63.
    Q. Lin, J. Rosenberg, D. Chang, R. Camacho, M. Eichen- field, K. J. Vahala, and O. Painter, Coherent mixing of mechanical excitations in nano-optomechanical structures, Nat. Photonics, 2010, 4(4): 236ADSGoogle Scholar
  64. 64.
    S. Lee, S. C. Eom, J. S. Chang, C. Huh, G. Y. Sung, and J. H. Shin, A silicon nitride microdisk resonator with a 40-nmthin horizontal air slot, Opt. Express, 2010, 18(11): 11209ADSGoogle Scholar
  65. 65.
    S. Lee, S. C. Eom, J. S. Chang, C. Huh, G. Y. Sung, and J. H. Shin, Label-free optical biosensing using a horizontal airslot SiNx microdisk resonator, Opt. Express, 2010, 18(20): 20638ADSGoogle Scholar
  66. 66.
    J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane, Nature, 2008, 452(7183): 72ADSGoogle Scholar
  67. 67.
    G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Riviere, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, Near-field cavity optomechanics with nanomechanical oscillators, Nat. Phys., 2009, 5(12): 909Google Scholar
  68. 68.
    C. L. Zou, X. B. Zou, F. W. Sun, Z. F. Han, and G. C. Guo, Room-temperature steady-state optomechanical entanglement on a chip, Phys. Rev. A, 2011, 84(3): 032317ADSGoogle Scholar
  69. 69.
    E. Gavartin, P. Verlot, and T. J. Kippenberg, A hybrid onchip optomechanical transducer for ultrasensitive force measurements, Nat. Nanotechnol., 2012, 7(8): 509ADSGoogle Scholar
  70. 70.
    H. K. Li, Y. C. Liu, X. Yi, C. L. Zou, X. X. Ren, and Y. F. Xiao, Proposal for a near-field optomechanical system with enhanced linear and quadratic coupling, Phys. Rev. A, 2012, 85(5): 053832ADSGoogle Scholar
  71. 71.
    J. Chan, M. Eichenfield, R. Camacho, and O. Painter, Optical and mechanical design of a “zipper” photonic crystal optomechanical cavity, Opt. Express, 2009, 17(5): 3802ADSGoogle Scholar
  72. 72.
    M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, A picogram- and nanometre-scale photonic-crystal optomechanical cavity, Nature, 2009, 459(7246): 550ADSGoogle Scholar
  73. 73.
    M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, Optomechanical crystals, Nature, 2009, 462(7269): 78ADSGoogle Scholar
  74. 74.
    M. Notomi, H. Taniyama, S. Mitsugi, and E. Kuramochi, Optomechanical wavelength and energy conversion in high-Q double-layer cavities of photonic crystal slabs, Phys. Rev. Lett., 2006, 97(2): 023903ADSGoogle Scholar
  75. 75.
    X. Sun, J. Zheng, M. Poot, C. W. Wong, and H. X. Tang, Femtogram doubly clamped nanomechanical resonators embedded in a high-Q two-dimensional photonic crystal nanocavity, Nano Lett., 2012, 12(5): 2299ADSGoogle Scholar
  76. 76.
    G. Bahl, K. H. Kim,W. Lee, J. Liu, X. Fan, and T. Carmon, Brillouin cavity optomechanics with microfluidic devices, Nat. Commun., 2013, 4: 1994ADSGoogle Scholar
  77. 77.
    V. Ginis, P. Tassin, C. M. Soukoulis, and I. Veretennicoff, Enhancing optical gradient forces with metamaterials, Phys. Rev. Lett., 2013, 110(5): 057401ADSGoogle Scholar
  78. 78.
    K. Srinivasan, H. Miao, M. T. Rakher, M. Davanco, and V. Aksyuk, Optomechanical transduction of an integrated silicon cantilever probe using a microdisk resonator, Nano Lett., 2011, 11(2): 791ADSGoogle Scholar
  79. 79.
    A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, A high-resolution microchip optomechanical accelerometer, Nat. Photonics, 2012, 6(11): 768ADSGoogle Scholar
  80. 80.
    M. L. Povinelli, S. G. Johnson, M. Loncar, M. Ibanescu, E. J. Smythe, F. Capasso, and J. D. Joannopoulos, High-Q enhancement of attractive and repulsive optical forces between coupled whispering-gallery-mode resonators, Opt. Express, 2005, 13(20): 8286ADSGoogle Scholar
  81. 81.
    V. S. Ilchenko, M. L. Gorodetsky, and S. P. Vyatchanin, Coupling and tunability of optical whispering-gallery modes: A basis for coordinate meter, Opt. Commun., 1994, 107(1–2): 41ADSGoogle Scholar
  82. 82.
    J. L. Arlett, E. B. Myers, and M. L. Roukes, Comparative advantages of mechanical biosensors, Nat. Nanotechnol., 2011, 6(4): 203ADSGoogle Scholar
  83. 83.
    A. Boisen, S. Dohn, S. S. Keller, S. Schmid, and M. Tenje, Cantilever-like micromechanical sensors., Rep. Prog. Phys., 2011, 74(3): 036101ADSGoogle Scholar
  84. 84.
    Y. Liu, H. Miao, V. Aksyuk, and K. Srinivasan, Wide cantilever stiffness range cavity optomechanical sensors for atomic force microscopy, Opt. Express, 2012, 20(16): 18268ADSGoogle Scholar
  85. 85.
    G. I. Harris, D. L. McAuslan, T. M. Stace, A. C. Doherty, and W. P. Bowen, Minimum requirements for feedback enhanced force sensing, arXiv: 1303.1589, 2013Google Scholar
  86. 86.
    D. Woolf, P. C. Hui, E. Iwase, M. Khan, A. W. Rodriguez, P. Deotare, I. Bulu, S. G. Johnson, F. Capasso, and M. Loncar, Optomechanical and photothermal interactions in suspended photonic crystal membranes, Opt. Express, 2013, 21(6): 7258ADSGoogle Scholar
  87. 87.
    F. Capasso, J. N. Munday, D. Iannuzzi, and H. B. Chan, Casimir forces and quantum electrodynamical torques: Physics and nanomechanics, IEEE J. Sel. Top. Quantum Electron., 2007, 13(2): 400Google Scholar
  88. 88.
    A. W. Rodriguez, F. Capasso, and S. G. Johnson, The Casimir effect in microstructured geometries, Nat. Photonics, 2011, 5(4): 211ADSGoogle Scholar
  89. 89.
    J. J. Li and K. D. Zhu, Nonlinear optical mass sensor with an optomechanical microresonator, Appl. Phys. Lett., 2012, 101(14): 141905ADSGoogle Scholar
  90. 90.
    F. Liu and M. Hossein-Zadeh, Mass sensing with optomechanical oscillation, IEEE Sens. J., 2013, 13(1): 146Google Scholar
  91. 91.
    C. Gmachl, F. Capasso, E. Narimanov, J. U. Nöckel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, High-power directional emission from microlasers with chaotic resonators, Science, 1998, 280(5369): 1556ADSGoogle Scholar
  92. 92.
    Q. J. Wang, C. Yan, N. Yu, J. Unterhinninghofen, J. Wiersig, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, From the cover: Whispering-gallery mode resonators for highly unidirectional laser action, Proc. Natl. Acad. Sci. USA, 2010, 107(52): 22407ADSGoogle Scholar
  93. 93.
    C. L. Zou, F. J. Shu, F. W. Sun, Z. J. Gong, Z. F. Han, and G. C. Guo, Theory of free space coupling to high-Q whispering gallery modes, Opt. Express, 2013, 21(8): 9982ADSGoogle Scholar
  94. 94.
    B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, Microring resonator channel dropping filters, J. Lightwave Technol., 1997, 15(6): 998ADSGoogle Scholar
  95. 95.
    J. P. Laine, B. E. Little, D. R. Lim, H. C. Tapalian, L. C. Kimerling, and H. A. Haus, Microsphere resonator mode characterization by pedestal anti-resonant reflecting waveguide coupler, IEEE Photon. Technol. Lett., 2000, 12(8): 1004ADSGoogle Scholar
  96. 96.
    J. P. Laine, C. Tapalian, B. Little, and H. Haus, Acceleration sensor based on high-Q optical microsphere resonator and pedestal antiresonant reflecting waveguide coupler, Sens. Actuators A Phys., 2001, 93(1): 1Google Scholar
  97. 97.
    M. A. Perez and A. M. Shkel, Design and demonstration of a bulk micromachined Fabry-Pérot μg-resolution accelerometer, IEEE Sens. J., 2007, 7(12): 1653Google Scholar
  98. 98.
    U. Krishnamoorthy, G. R. III Olsson, M. S. Bogart, D. W. Baker, T. P. Carr, T. P. Swiler, and P. J. Clews, In-plane MEMS-based nano-g accelerometer with sub-wavelength optical resonant sensor, Sens. Actuators A Phys., 2008, 145–146: 283Google Scholar
  99. 99.
    D. N. Hutchison and S. A. Bhave, Z-axis optomechanical accelerometer, in: IEEE 25th International Conference on Micro Electro Mechanical Systems, IEEE, 2012: 615–619Google Scholar
  100. 100.
    P. H. Kim, C. Doolin, B. D. Hauer, A. J. MacDonald, M. R. Freeman, P. E. Barclay, and J. P. Davis, Nanoscale torsional optomechanics, Appl. Phys. Lett., 2013, 102(5): 053102ADSGoogle Scholar
  101. 101.
    J. P. Davis, D. Vick, D. C. Fortin, J. A. J. Burgess, W. K. Hiebert, and M. R. Freeman, Nanotorsional resonator torque magnetometry, Appl. Phys. Lett., 2010, 96(7): 072513ADSGoogle Scholar
  102. 102.
    S. Forstner, S. Prams, J. Knittel, E. D. van Ooijen, J. D. Swaim, G. I. Harris, A. Szorkovszky, W. P. Bowen, and H. Rubinsztein-Dunlop, Cavity optomechanical magnetometer, Phys. Rev. Lett., 2012, 108(12): 120801ADSGoogle Scholar
  103. 103.
    S. Lin, E. Schonbrun, and K. Crozier, Optical manipulation with planar silicon microring resonators, Nano Lett., 2010, 10(7): 2408ADSGoogle Scholar
  104. 104.
    H. Cai and A. W. Poon, Optical manipulation and transport of microparticles on silicon nitride microring-resonatorbased add-drop devices, Opt. Lett., 2010, 35(17): 2855ADSGoogle Scholar
  105. 105.
    H. Cai and A. W. Poon, Optical manipulation of microparticles using whispering-gallery modes in a silicon nitride microdisk resonator, Opt. Lett., 2011, 36(21): 4257ADSGoogle Scholar
  106. 106.
    V. R. Dantham, S. Holler, V. Kolchenko, Z. Wan, and S. Arnold, Taking whispering gallery-mode single virus detection and sizing to the limit, Appl. Phys. Lett., 2012, 101(4): 043704ADSGoogle Scholar
  107. 107.
    S. I. Shopova, R. Rajmangal, S. Holler, and S. Arnold, Plasmonic enhancement of a whispering-gallery-mode biosensor for single nanoparticle detection, Appl. Phys. Lett., 2011, 98(24): 243104ADSGoogle Scholar
  108. 108.
    M. A. Santiago-Cordoba, M. Cetinkaya, S. V. Boriskina, F. Vollmer, and M. C. Demirel, Ultrasensitive detection of a protein by optical trapping in a photonic-plasmonic microcavity, J. Biophoton., 2012, 5(8–9): 629Google Scholar
  109. 109.
    A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides, Nature, 2009, 457(7225): 71ADSGoogle Scholar
  110. 110.
    S. Lin and K. B. Crozier, Planar silicon microrings as wavelength-multiplexed optical traps for storing and sensing particles, Lab on a Chip, 2011, 11(23): 4047Google Scholar
  111. 111.
    L. Novotny and B. Hecht, Principles of Nano-Optics, Cambridge: Cambridge University Press, 2006Google Scholar
  112. 112.
    J. D. Jackson, Classical Electrodynamics, Wiley, 1998Google Scholar
  113. 113.
    J. P. Gordon, Radiation forces and momenta in dielectric media, Phys. Rev. A, 1973, 8(1): 14ADSGoogle Scholar
  114. 114.
    A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, Observation of a single-beam gradient force optical trap for dielectric particles, Opt. Lett., 1986, 11(5): 288ADSGoogle Scholar
  115. 115.
    Y. F. Xiao, C. L. Zou, B. B. Li, Y. Li, C. H. Dong, Z. F. Han, and Q. Gong, High-Q exterior Whispering-Gallery modes in a metal-coated microresonator, Phys. Rev. Lett., 2010, 105(15): 153902ADSGoogle Scholar
  116. 116.
    Y. F. Xiao, Y. C. Liu, B. B. Li, Y. L. Chen, Y. Li, and Q. Gong, Strongly enhanced light-matter interaction in a hybrid photonic-plasmonic resonator, Phys. Rev. A, 2012, 85(3): 031805ADSGoogle Scholar
  117. 117.
    L. Zhou, X. Sun, X. Li, and J. Chen, Miniature microring resonator sensor based on a hybrid plasmonic waveguide, Sensors, 2011, 11(12): 6856Google Scholar
  118. 118.
    Y. W. Hu, B. B. Li, Y. X. Liu, Y. F. Xiao, and Q. Gong, Hybrid photonic-plasmonic mode for refractometer and nanoparticle trapping, Opt. Commun., 2013, 291: 380ADSGoogle Scholar
  119. 119.
    F. Marquardt, J. P. Chen, A. A. Clerk, and S. M. Girvin, Quantum theory of cavity-assisted sideband cooling of mechanical motion, Phys. Rev. Lett., 2007, 99(9): 093902ADSGoogle Scholar
  120. 120.
    M. Ludwig and F. Marquardt, Quantum many-body dynamics in optomechanical arrays, Phys. Rev. Lett., 2013, 111(7): 073603ADSGoogle Scholar
  121. 121.
    M. A. Lemonde, N. Didier, and A. A. Clerk, Nonlinear interaction effects in a strongly driven optomechanical cavity, Phys. Rev. Lett., 2013, 111(5): 053602ADSGoogle Scholar
  122. 122.
    K. Børkje, A. Nunnenkamp, J. D. Teufel, and S. M. Girvin, Signatures of nonlinear cavity optomechanics in the weak coupling regime, Phys. Rev. Lett., 2013, 111(5): 053603ADSGoogle Scholar
  123. 123.
    Y. C. Liu, Y. F. Xiao, Y. L. Chen, X. C. Yu, and Q. Gong, Parametric down-conversion and polariton pair generation in optomechanical systems, Phys. Rev. Lett., 2013, 111(8): 083601ADSGoogle Scholar
  124. 124.
    J. Capmany and D. Novak, Microwave photonics combines two worlds, Nat. Photonics, 2007, 1(6): 319ADSGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Yi-Wen Hu
    • 1
  • Yun-Feng Xiao
    • 1
  • Yong-Chun Liu
    • 1
  • Qihuang Gong
    • 1
  1. 1.State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of PhysicsPeking UniversityBeijingChina

Personalised recommendations