Advertisement

Frontiers of Physics

, Volume 9, Issue 1, pp 3–16 | Cite as

Plasmon point spread functions: How do we model plasmon-mediated emission processes?

  • Katherine A. Willets
Perspective

Abstract

A major challenge with studying plasmon-mediated emission events is the small size of plasmonic nanoparticles relative to the wavelength of light. Objects smaller than roughly half the wavelength of light will appear as diffraction-limited spots in far-field optical images, presenting a significant experimental challenge for studying plasmonic processes on the nanoscale. Super-resolution imaging has recently been applied to plasmonic nanosystems and allows plasmon-mediated emission to be resolved on the order of ∼5 nm. In super-resolution imaging, a diffraction-limited spot is fit to some model function in order to calculate the position of the emission centroid, which represents the location of the emitter. However, the accuracy of the centroid position strongly depends on how well the fitting function describes the data. This Perspective discusses the commonly used two-dimensional Gaussian fitting function applied to super-resolution imaging of plasmon-mediated emission, then introduces an alternative model based on dipole point spread functions. The two fitting models are compared and contrasted for super-resolution imaging of nanoparticle scattering/luminescence, surface-enhanced Raman scattering, and surface-enhanced fluorescence.

Keywords

plasmon point spread function dipole super-resolution surface-enhanced Raman scattering (SERS) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and notes

  1. 1.
    K. A. Willets and R. P. Van Duyne, Localized surface plasmon resonance spectroscopy and sensing, Annu. Rev. Phys. Chem., 2007, 58(1): 267ADSCrossRefGoogle Scholar
  2. 2.
    N. J. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, Plasmons in strongly coupled metallic nanostructures, Chem. Rev., 2011, 111(6): 3913CrossRefGoogle Scholar
  3. 3.
    J. A. Dionne and H. A. Atwater, Plasmonics: Metal-worthy methods and materials in nanophotonics, MRS Bull., 2012, 37(8): 717CrossRefGoogle Scholar
  4. 4.
    S. Lal, J. H. Hafner, N. J. Halas, S. Link, and P. Nordlander, Noble metal nanowires: From plasmon waveguides to passive and active devices, Acc. Chem. Res., 2012, 45(11): 1887CrossRefGoogle Scholar
  5. 5.
    S. A. Maier, Plasmonics: Metal nanostructures for subwavelength photonic devices, IEEE J. Sel. Top. Quantum Electron., 2006, 12(6): 1214CrossRefGoogle Scholar
  6. 6.
    M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. García de Abajo, and R. Quidant, Nanooptical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas, Nano Lett., 2009, 9(10): 3387ADSCrossRefGoogle Scholar
  7. 7.
    K. C. Toussaint, M. Liu, M. Pelton, J. Pesic, M. J. Guffey, P. Guyot-Sionnest, and N. F. Scherer, Plasmon resonancebased optical trapping of single and multiple Au 1nanoparticles, Opt. Express, 2007, 15(19): 12017ADSCrossRefGoogle Scholar
  8. 8.
    A. J. Haes, C. L. Haynes, A. D. McFarland, G. C. Schatz, R. P. van Duyne, and S. Zou, Plasmonic materials for surfaceenhanced sensing and spectroscopy, MRS Bull., 2005, 30(5): 368CrossRefGoogle Scholar
  9. 9.
    R. S. Golightly, W. E. Doering, and M. J. Natan, Surfaceenhanced Raman spectroscopy and homeland security: A perfect match? ACS Nano, 2009, 3(10): 2859CrossRefGoogle Scholar
  10. 10.
    P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, Surface-enhanced Raman spectroscopy, Annu. Rev. Anal. Chem., 2008, 1(1): 601CrossRefGoogle Scholar
  11. 11.
    M. Moskovits, Surface-enhanced Raman scattering, Topics in Applied Physics, 2006, 103: 1CrossRefGoogle Scholar
  12. 12.
    E. Fort and S. Gresillon, Surface enhanced fluorescence, J. Phys. D, 2008, 41(1): 013001/1ADSGoogle Scholar
  13. 13.
    C. D. Geddes, K. Aslan, I. Gryczynski, J. Malicka, and J. R. Lakowicz, Noble metal nanostructure for metal-enhanced fluorescence, Annual Reviews in Fluorescence, 2004, 1: 365Google Scholar
  14. 14.
    K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment, J. Phys. Chem. B, 2003, 107(3): 668CrossRefGoogle Scholar
  15. 15.
    K. L. Wustholz, A. I. Henry, J. M. McMahon, R. G. Freeman, N. Valley, M. E. Piotti, M. J. Natan, G. C. Schatz, and R. P. Van Duyne, Structure-activity relationships in gold nanoparticle dimers and trimers for surface-enhanced Raman spectroscopy, J. Am. Chem. Soc., 2010, 132(31): 10903CrossRefGoogle Scholar
  16. 16.
    T. Shegai, Z. Li, T. Dadosh, Z. Zhang, H. Xu, and G. Haran, Managing light polarization via plasmon-molecule interactions within an asymmetric metal nanoparticle trimer, Proc. Natl. Acad. Sci. USA, 2008, 105(43): 16448ADSCrossRefGoogle Scholar
  17. 17.
    T. Shegai, B. Brian, V. D. Miljković, and M. Käll, Angular distribution of surface-enhanced Raman scattering from individual Au nanoparticle aggregates, ACS Nano, 2011, 5(3): 2036CrossRefGoogle Scholar
  18. 18.
    S. M. Stranahan and K. A. Willets, Super-resolution optical imaging of single-molecule SERS hot spots, Nano Lett., 2010, 10(9): 3777ADSCrossRefGoogle Scholar
  19. 19.
    H. Cang, A. Labno, C. Lu, X. Yin, M. Liu, C. Gladden, Y. Liu, and X. Zhang, Probing the electromagnetic field of a 15-nanometre hotspot by single molecule imaging, Nature, 2011, 469(7330): 385ADSCrossRefGoogle Scholar
  20. 20.
    T. Huang and X. H. Nancy Xu, Multicolored nanometer-resolution mapping of single protein-ligand binding complexes using far-field photostable optical nanoscopy (PHOTON), Nanoscale, 2011, 3(9): 3567ADSCrossRefGoogle Scholar
  21. 21.
    M. L. Weber and K. A. Willets, Correlated super-resolution optical and structural studies of surface-enhanced Raman scattering hot spots in silver colloid aggregates, J. Phys. Chem. Lett., 2011, 2(14): 1766CrossRefGoogle Scholar
  22. 22.
    F. Balzarotti and F. D. Stefani, Plasmonics meets far-field optical nanoscopy, ACS Nano, 2012, 6(6): 4580CrossRefGoogle Scholar
  23. 23.
    M. Davies, A. Wochnik, F. Feil, C. Jung, C. Bräuchle, C. Scheu, and J. Michaelis, Synchronous emission from nanometric silver particles through plasmonic coupling on silver nanowires, ACS Nano, 2012, 6(7): 6049CrossRefGoogle Scholar
  24. 24.
    J. W. Ha, K. Marchuk, and N. Fang, Focused orientation and position imaging (FOPI) of single anisotropic plasmonic nanoparticles by total internal reflection scattering microscopy, Nano Lett., 2012, 12(8): 4282ADSCrossRefGoogle Scholar
  25. 25.
    T. Huang, L. M. Browning, and X. H. N. Xu, Far-field photostable optical nanoscopy (PHOTON) for real-time superresolution single-molecular imaging of signaling pathways of single live cells, Nanoscale, 2012, 4(9): 2797ADSCrossRefGoogle Scholar
  26. 26.
    H. Lin, S. P. Centeno, L. Su, B. Kenens, S. Rocha, M. Sliwa, J. Hofkens, and H. Uji-i, Mapping of surface-enhanced fluorescence on metal nanoparticles using super-resolution photoactivation localization microscopy, ChemPhysChem, 2012, 13(4): 973CrossRefGoogle Scholar
  27. 27.
    L. B. Sagle, L. K. Ruvuna, J. M. Bingham, C. Liu, P. S. Cremer, and R. P. Van Duyne, Single plasmonic nanoparticle tracking studies of solid supported bilayers with ganglioside lipids, J. Am. Chem. Soc., 2012, 134(38): 15832CrossRefGoogle Scholar
  28. 28.
    E. J. Titus, M. L. Weber, S. M. Stranahan, and K. A. Willets, Super-resolution SERS imaging beyond the singlemolecule limit: An isotope-edited approach, Nano Lett., 2012, 12(10): 5103ADSCrossRefGoogle Scholar
  29. 29.
    M. L. Weber, J. P. Litz, D. J. Masiello, and K. A. Willets, Super-resolution imaging reveals a difference between SERS and luminescence centroids, ACS Nano, 2012, 6(2): 1839CrossRefGoogle Scholar
  30. 30.
    X. Zhou, N. M. Andoy, G. Liu, E. Choudhary, K. S. Han, H. Shen, and P. Chen, Quantitative super-resolution imaging uncovers reactivity patterns on single nanocatalysts, Nat. Nanotechnol., 2012, 7(4): 237ADSCrossRefGoogle Scholar
  31. 31.
    N. M. Andoy, X. Zhou, E. Choudhary, H. Shen, G. Liu, and P. Chen, Single-molecule catalysis mapping quantifies site-specific activity and uncovers radial activity gradient on single 2D nanocrystals, J. Am. Chem. Soc., 2013, 135(5): 1845CrossRefGoogle Scholar
  32. 32.
    L. Wei, C. Liu, B. Chen, P. Zhou, H. Li, L. Xiao, and E. S. Yeung, Analytical Chemistry, 2013, Ahead of PrintGoogle Scholar
  33. 33.
    K. Marchuk, J. W. Ha, and N. Fang, Three-dimensional high-resolution rotational tracking with superlocalization reveals conformations of surface-bound anisotropic nanoparticles, Nano Lett., 2013, 13(3): 1245ADSCrossRefGoogle Scholar
  34. 34.
    K. L. Blythe, K. M. Mayer, M. L. Weber, and K. A. Willets, Ground state depletion microscopy for imaging interactions between gold nanowires and fluorophore-labeled ligands, Phys. Chem. Chem. Phys., 2013, 15(12): 4136CrossRefGoogle Scholar
  35. 35.
    W. E. Moerner, Microscopy beyond the diffraction limit using actively controlled single molecules, J. Microsc., 2012, 246(3): 213CrossRefGoogle Scholar
  36. 36.
    K. A. Willets, S. M. Stranahan, and M. L. Weber, Shedding light on surface-enhanced Raman scattering hot spots through single-molecule super-resolution imaging, J. Phys. Chem. Lett., 2012, 3(10): 1286CrossRefGoogle Scholar
  37. 37.
    A. Yildiz, J. N. Forkey, S. A. McKinney, T. Ha, Y. E. Goldman, and P. R. Selvin, Myosin V walks hand-over-hand: Single fluorophore imaging with 1.5-nm localization, Science, 2003, 300(5628): 2061ADSCrossRefGoogle Scholar
  38. 38.
    G. P. Wiederrecht, Near-field optical imaging of noble metal nanoparticles, Eur. Phys. J.: Appl. Phys., 2004, 28(1): 3ADSGoogle Scholar
  39. 39.
    K. I. Willig, B. Harke, R. Medda, and S. W. Hell, STED microscopy with continuous wave beams, Nat. Methods, 2007, 4(11): 915CrossRefGoogle Scholar
  40. 40.
    Y. Sivan, Y. Sonnefraud, S. Kena-Cohen, J. B. Pendry, and S. A. Maier, ACS Nano, 2012, Ahead of PrintGoogle Scholar
  41. 41.
    F. Wei and Z. Liu, Plasmonic structured illumination microscopy, Nano Lett., 2010, 10(7): 2531ADSCrossRefGoogle Scholar
  42. 42.
    E. H. Hellen and D. Axelrod, Fluorescence emission at dielectric and metal-film interfaces, J. Opt. Soc. Am. B, 1987, 4(3): 337ADSCrossRefGoogle Scholar
  43. 43.
    R. M. Dickson, D. J. Norris, and W. E. Moerner, Simultaneous imaging of individual molecules aligned both parallel and perpendicular to the optic axis, Phys. Rev. Lett., 1998, 81(24): 5322ADSCrossRefGoogle Scholar
  44. 44.
    M. Bohmer and J. Enderlein, Orientation imaging of single molecules by wide-field epifluorescence microscopy, J. Opt. Soc. Am. B, 2003, 20(3): 554ADSCrossRefGoogle Scholar
  45. 45.
    J. Enderlein, E. Toprak, and P. R. Selvin, Polarization effect on position accuracy of fluorophore localization, Opt. Express, 2006, 14(18): 8111ADSCrossRefGoogle Scholar
  46. 46.
    S. Stallinga and B. Rieger, Accuracy of the gaussian point spread function model in 2D localization microscopy, Opt. Express, 2010, 18(24): 24461ADSCrossRefGoogle Scholar
  47. 47.
    E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M.W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, Imaging intracellular fluorescent proteins at nanometer resolution, Science, 2006, 313(5793): 1642ADSCrossRefGoogle Scholar
  48. 48.
    M. J. Rust, M. Bates, and X. Zhuang, Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM), Nat. Methods, 2006, 3(10): 793CrossRefGoogle Scholar
  49. 49.
    K. Lidke, B. Rieger, T. Jovin, and R. Heintzmann, Superresolution by localization of quantum dots using blinking statistics, Opt. Express, 2005, 13(18): 7052ADSCrossRefGoogle Scholar
  50. 50.
    J. Fölling, M. Bossi, H. Bock, R. Medda, C. A. Wurm, B. Hein, S. Jakobs, C. Eggeling, and S. W. Hell, Fluorescence nanoscopy by ground-state depletion and single-molecule return, Nat. Methods, 2008, 5(11): 943CrossRefGoogle Scholar
  51. 51.
    C. Steinhauer, C. Forthmann, J. Vogelsang, and P. Tinnefeld, Superresolution microscopy on the basis of engineered dark states, J. Am. Chem. Soc., 2008, 130(50): 16840CrossRefGoogle Scholar
  52. 52.
    K. A. Willets and S. M. Stranahan, Single molecule spectroscopy and superresolution imaging V, in: Proceedings of SPIE 2012, 8228: 82280P–82280P-8ADSCrossRefGoogle Scholar
  53. 53.
    A. P. Bartko and R. M. Dickson, Imaging three-dimensional single molecule orientations, J. Phys. Chem. B, 1999, 103(51): 11237CrossRefGoogle Scholar
  54. 54.
    B. Sick, B. Hecht, and L. Novotny, Orientational imaging of single molecules by annular illumination, Phys. Rev. Lett., 2000, 85(21): 4482ADSCrossRefGoogle Scholar
  55. 55.
    M. A. Lieb, J. M. Zavislan, and L. Novotny, Single-molecule orientations determined by direct emission pattern imaging, J. Opt. Soc. Am. B, 2004, 21(6): 1210ADSCrossRefGoogle Scholar
  56. 56.
    D. Patra, I. Gregor, and J. Enderlein, Image analysis of defocused single-molecule images for three-dimensional molecule orientation studies, J. Phys. Chem. A, 2004, 108(33): 6836CrossRefGoogle Scholar
  57. 57.
    J. Engelhardt, J. Keller, P. Hoyer, M. Reuss, T. Staudt, and S. W. Hell, Molecular orientation affects localization accuracy in superresolution far-field fluorescence microscopy, Nano Lett., 2011, 11(1): 209ADSCrossRefGoogle Scholar
  58. 58.
    K. I. Mortensen, L. S. Churchman, J. A. Spudich, and H. Flyvbjerg, Optimized localization analysis for singlemolecule tracking and super-resolution microscopy, Nat. Methods, 2010, 7(5): 377CrossRefGoogle Scholar
  59. 59.
    A. V. Abraham, S. Ram, J. Chao, E. S. Ward, and R. J. Ober, Quantitative study of single molecule location estimation techniques, Opt. Express, 2009, 17(26): 23352ADSCrossRefGoogle Scholar
  60. 60.
    R. Parthasarathy, Rapid, accurate particle tracking by calculation of radial symmetry centers, Nat. Methods, 2012, 9(7): 724CrossRefGoogle Scholar
  61. 61.
    S. Wolter, A. Löschberger, T. Holm, S. Aufmkolk, M. C. Dabauvalle, S. van de Linde, and M. Sauer, rapidSTORM: Accurate, fast open-source software for localization microscopy, Nat. Methods, 2012, 9(11): 1040CrossRefGoogle Scholar
  62. 62.
    L. Zhu, W. Zhang, D. Elnatan, and B. Huang, Faster STORM using compressed sensing, Nat. Methods, 2012, 9(7): 721CrossRefGoogle Scholar
  63. 63.
    J. Chao, S. Ram, E. S. Ward, and R. J. Ober, Ultrahigh accuracy imaging modality for super-localization microscopy, Nat. Methods, 2013, 10(4): 335CrossRefGoogle Scholar
  64. 64.
    L. Xiao, Y. X. Qiao, Y. He, and E. S. Yeung, Three dimensional orientational imaging of nanoparticles with darkfield microscopy, Anal. Chem., 2010, 82(12): 5268CrossRefGoogle Scholar
  65. 65.
    T. Li, Q. Li, Y. Xu, X. J. Chen, Q. F. Dai, H. Liu, S. Lan, S. Tie, and L. J. Wu, Three-dimensional orientation sensors by defocused imaging of gold nanorods through an ordinary wide-field microscope, ACS Nano, 2012, 6(2): 1268CrossRefGoogle Scholar
  66. 66.
    F. Wackenhut, A. Virgilio Failla, T. Zuechner, M. Steiner, and A. J. Meixner, Three-dimensional photoluminescence mapping and emission anisotropy of single gold nanorods, Appl. Phys. Lett., 2012, 100(26): 263102/1ADSGoogle Scholar
  67. 67.
    T. Motegi, H. Nabika, Y. Niidome, and K. Murakoshi, Observation of defocus images of a single metal nanorod, J. Phys. Chem. C, 2013, 117(6): 2535CrossRefGoogle Scholar
  68. 68.
    N. G. Khlebtsov, A. G. Mel’nikov, V. A. Bogatyrev, A. V. Alekseeva, and B. N. Khlebtsov, Depolarization of light scattered by gold nanospheres and nanorods, Opt. Spectrosc., 2006, 100(3): 448ADSCrossRefGoogle Scholar
  69. 69.
    K. A. Koen, M. L. Weber, K. M. Mayer, E. Fernandez, and K. A. Willets, Spectrally-resolved polarization anisotropy of single plasmonic nanoparticles excited by total internal reflection, J. Phys. Chem. C, 2012, 116(30): 16198CrossRefGoogle Scholar
  70. 70.
    O. Schubert, J. Becker, L. Carbone, Y. Khalavka, T. Provalska, I. Zins, and C. Sönnichsen, Mapping the polarization pattern of plasmon modes reveals nanoparticle symmetry, Nano Lett., 2008, 8(8): 2345ADSCrossRefGoogle Scholar
  71. 71.
    L. K. Ausman and G. C. Schatz, On the importance of incorporating dipole reradiation in the modeling of surface enhanced Raman scattering from spheres, J. Chem. Phys., 2009, 131(8): 084708/1ADSGoogle Scholar
  72. 72.
    H. Xu and M. Käll, Polarization-dependent surfaceenhanced Raman spectroscopy of isolated silver nanoaggregates, ChemPhysChem, 2003, 4(9): 1001CrossRefGoogle Scholar
  73. 73.
    S. M. Stranahan, E. J. Titus, and K. A. Willets, SERS orientational imaging of silver nanoparticle dimers, J. Phys. Chem. Lett., 2011, 2(21): 2711CrossRefGoogle Scholar
  74. 74.
    S. M. Stranahan, E. J. Titus, and K. A. Willets, Discriminating nanoparticle dimers from higher order aggregates through wavelength-dependent SERS orientational imaging, ACS Nano, 2012, 6(2): 1806CrossRefGoogle Scholar
  75. 75.
    D. W. Brandl, N. A. Mirin, and P. Nordlander, Plasmon modes of nanosphere trimers and quadrumers, J. Phys. Chem. B, 2006, 110(25): 12302CrossRefGoogle Scholar
  76. 76.
    Z. Li, T. Shegai, G. Haran, and H. Xu, Multiple-particle nanoantennas for enormous enhancement and polarization control of light emission, ACS Nano, 2009, 3(3): 637CrossRefGoogle Scholar
  77. 77.
    T. Ming, H. Chen, R. Jiang, Q. Li, and J. Wang, Plasmoncontrolled fluorescence: Beyond the intensity enhancement, J. Phys. Chem. Lett., 2012, 3(2): 191CrossRefGoogle Scholar
  78. 78.
    S. Kuhn, U. Hakanson, L. Rogobete, and V. Sandoghdar, Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna, Phys. Rev. Lett., 2006, 97(1): 017402/1ADSGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of Texas at AustinAustinUSA

Personalised recommendations