Advertisement

Frontiers of Physics

, Volume 8, Issue 4, pp 412–437 | Cite as

Introduction to the CDEX experiment

  • Ke-Jun Kang
  • Jian-Ping Cheng
  • Jin Li
  • Yuan-Jing Li
  • Qian Yue
  • Yang Bai
  • Yong Bi
  • Jian-Ping Chang
  • Nan Chen
  • Ning Chen
  • Qing-Hao Chen
  • Yun-Hua Chen
  • Yo-Chun Chuang
  • Zhi Deng
  • Qiang Du
  • Hui Gong
  • Xi-Qing Hao
  • Hong-Jian He
  • Qing-Ju He
  • Xin-Hui Hu
  • Han-Xiong Huang
  • Teng-Rui Huang
  • Hao Jiang
  • Hau-Bin Li
  • Jian-Min Li
  • Jun Li
  • Xia Li
  • Xin-Ying Li
  • Xue-Qian Li
  • Yu-Lan Li
  • Heng-Ye Liao
  • Fong-Kay Lin
  • Shin-Ted Lin
  • Shu-Kui Liu
  • Ya-Bin Liu
  • Lan-Chun Lü
  • Hao Ma
  • Shao-Ji Mao
  • Jian-Qiang Qin
  • Jie Ren
  • Jing Ren
  • Xi-Chao Ruan
  • Man-Bin Shen
  • Man-Bin Shen
  • Lakhwinder Simgh
  • Manoj Kumar Singh
  • Arun Kumar Soma
  • Jian Su
  • Chang-Jian Tang
  • Chao-Hsiung Tseng
  • Ji-Min Wang
  • Li Wang
  • Qing Wang
  • Tsz-King Henry Wong
  • Xu-Feng Wang
  • Shi-Yong Wu
  • Wei Wu
  • Yu-Cheng Wu
  • Zhong-Zhi Xianyu
  • Hao-Yang Xing
  • Xun-Jie Xu
  • Yin Xu
  • Tao Xue
  • Li-Tao Yang
  • Song-Wei Yang
  • Nan Yi
  • Chun-Xu Yu
  • Hao Yu
  • Xun-Zhen Yu
  • Xiong-Hui Zeng
  • Zhi Zeng
  • Lan Zhang
  • Yun-Hua Zhang
  • Ming-Gang Zhao
  • Wei Zhao
  • Su-Ning Zhong
  • Jin Zhou
  • Zu-Ying Zhou
  • Jing-Jun Zhu
  • Wei-Bin Zhu
  • Xue-Zhou Zhu
  • Zhong-Hua Zhu
  • CDEX Collaboration
Report

Abstract

It is believed that weakly interacting massive particles (WIMPs) are candidates for dark matter (DM) in our universe which come from outer space and might interact with the standard model (SM) matter of our detectors on the earth. Many collaborations in the world are carrying out various experiments to directly detect DM particles. China Jinping underground Laboratory (CJPL) is the deepest underground laboratory in the world and provides a very promising environment for DM search. China Dark matter EXperiment (CDEX) is going to directly detect the WIMP flux with high sensitivity in the low WIMP-mass region. Both CJPL and CDEX have achieved a remarkable progress in recent three years. CDEX employs a point-contact germanium (PCGe) semi-conductor detector whose energy threshold is less than 300 eV. In this report we present the measurement results of muon flux, monitoring of radioactivity and radon concentration carried out in CJPL, as well describing the structure and performance of the 1 kg-PCGe detector in CDEX-1 and 10 kg-PCGe detector array in CDEX-10 including the detectors, electronics, shielding and cooling systems. Finally we discuss the physics goals of CDEX-1, CDEX-10 and the future CDEX-1T experiments.

Keywords

China Dark matter EXperiment (CDEX) dark matter poit-contact germanium detector China Jinping underground Laboratory (CJPL) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and notes

  1. 1.
    F. Zwicky, On the masses of nebulae and of clusters of nebulae, Astrophys. J., 1937, 86: 217ADSzbMATHCrossRefGoogle Scholar
  2. 2.
    V. Rubin and W. K. J. Ford, Rotation of the andromeda nebula from a spectroscopic survey of emission regions, Astrophys. J., 1970, 159: 379ADSCrossRefGoogle Scholar
  3. 3.
    V. Rubin, W. K. J. Ford, and N. Thonnard, Rotational properties of 21 SC galaxies with a large range of luminosities and radii, from NGC 4605 /R = 4 kpc/ to UGC 2885 /R = 122 kpc/, Astrophys. J., 1980, 238: 471ADSCrossRefGoogle Scholar
  4. 4.
    V. Rubin, D. Burstein, W. K. J. Ford, and N. Thonnard, Rotation velocities of 16 SA galaxies and a comparison of Sa, Sb, and SC rotation properties, Astrophys. J., 1985, 289: 81ADSCrossRefGoogle Scholar
  5. 5.
    D. Clowe, M. Bradac, A. H. Gonzalez, M. Markevitch, S. W. Randall, C. Jones, and D. Zaritsky, A direct empirical proof of the existence of dark matter, Astrophys. J., 2006, 648(2): L109ADSCrossRefGoogle Scholar
  6. 6.
    J. Beringer, et al. [Particle Data Group], The review of particle physics, Phys. Rev. D, 2012, 86: 010001ADSCrossRefGoogle Scholar
  7. 7.
    Planck Collaboration, Planck 2013 results. XVI. cosmological parameters, arXiv: 1303.5076v1, 2013Google Scholar
  8. 8.
    V. Trimble, Existence and nature of dark matter in the universe, Annu. Rev. Astron. Astrophys., 1987, 25(1): 425ADSCrossRefGoogle Scholar
  9. 9.
    G. Jungman, M. Kamionkowski, and K. Griest, Supersymmetric dark matter, Phys. Rep., 1996, 267(5–6): 195ADSCrossRefGoogle Scholar
  10. 10.
    L. Bergstrom, Dark matter candidates, New J. Phys., 2009, 11(10): 105006ADSCrossRefGoogle Scholar
  11. 11.
    J. L. Feng, Dark matter candidates from particle physics and methods of detection, arXiv: 1003.0904, 2010Google Scholar
  12. 12.
    R. J. Gaitskell, Direct detection of dark matter, Ann. Rev. Nucl. Part. Sci., 2004, 54(1): 315ADSCrossRefGoogle Scholar
  13. 13.
    X.G. He, H. C. Tsai, T. Li, and X. Q. Li, Scalar darkmatter effects in Higgs and top quark decays, Mod. Phys. Lett. A, 2007, 22(25n28): 2121ADSCrossRefGoogle Scholar
  14. 14.
    X. He, T. Li, X. Q. Li, J. Tandean, and H. C. Tsai, Constraints on scalar dark matter from direct experimental searches, Phys. Rev. D, 2009, 79(2): 023521ADSCrossRefGoogle Scholar
  15. 15.
    A. Beylyaev, M. T. Frandsen, S. Sarkar, and F. Sannino, Mixed dark matter from Technicolor, Phys. Rev. D, 2011, 83(1): 015007, and the references thereinADSCrossRefGoogle Scholar
  16. 16.
    H. P. An, S. L. Chen, R. N. Mohapatra, S. Nussinov, and Y. Zhang, Energy dependence of direct detection cross-section for asymmetric mirror dark matter, Phys. Rev. D, 2010, 82: 023533, arXiv: 1004.3296ADSCrossRefGoogle Scholar
  17. 17.
    J.-W. Cui, H.-J. He, L.-C. Lu, and F.-R. Yin, Spontaneous mirror parity violation, common origin of matter and dark matter, and the LHC Signatures, Phys. Rev. D, 2012, 85: 096003, arXiv: 1110.6893ADSCrossRefGoogle Scholar
  18. 18.
    M. Gilloz, A. von Manteuffel, P. Schwaller, and D. Wyler, The little skyrmion: new dark matter for little Higgs models, J. High Energy Phys., 2011, 1103: 48, and references therein, arXiv: 1012.5288v2ADSCrossRefGoogle Scholar
  19. 19.
    J. Lavalle, J. M. Alimi, and A. Fuözfa, Cosmic ray positron excess: Is the dark matter solution a good bet? AIP Conf. Proc., 2010, 24: 398CrossRefGoogle Scholar
  20. 20.
    R. Yang, J. Chang, and J. Wu, A possible explanation for the electron/positron excess of ATIC/PAMELA, Res. Astro. Astrophys., 2010, 10(1): 39, and references thereinADSCrossRefGoogle Scholar
  21. 21.
    M. Amenomori, et al. [Tibet AS-gamma Collaboration], Cosmic-ray energy spectrum around the knee observed with the Tibet air-shower experiment, Astrophys. Space Sci. Trans., 2011, 7(1): 15ADSCrossRefGoogle Scholar
  22. 22.
    M. Aguilar, et al. [AMS Collaboration], First result from the alpha magnetic spectrometer on the international space station: Precision measurement of the positron fraction in primary cosmic rays of 0.5-350 GeV, Phys. Rev. Lett., 2013, 110(14): 141102ADSCrossRefGoogle Scholar
  23. 23.
    K. Bernabei, P. Belli, F. Cappella, R. Cerulli, C. J. Dai, A. d’Angelo, H. L. He, A. Incicchitti, H. H. Kuang, J. M. Ma, F. Montecchia, F. Nozzoli, D. Prosperi, X. D. Sheng, and Z. P. Ye, First results from DAMA/LIBRA and the combined results with DAMA/NaI, Eur. Phys. J. C, 2008, 56(3): 333ADSCrossRefGoogle Scholar
  24. 24.
    K. Bernabei, P. Belli, F. Cappella, R. Cerulli, C. J. Dai, A. d’Angelo, H. L. He, A. Incicchitti, H. H. Kuang, X. H. Ma, F. Montecchia, F. Nozzoli, D. Prosperi, X. D. Sheng, R. G. Wang, and Z. P. Ye, New results from DAMA/LIBRA, Eur. Phys. J. C, 2010, 67(1–2): 39ADSCrossRefGoogle Scholar
  25. 25.
    C. Aalseth, P. S. Barbeau, N. S. Bowden, B. Cabrera-Palmer, et al., Results from a search for light-mass dark matter with a p-type point contact germanium detector, Phys. Rev. Lett., 2011, 106(13): 131301ADSCrossRefGoogle Scholar
  26. 26.
    P. Brink, Z. Ahmed, D. S. Akerib, C. N. Bailey, et al., The cryogenic dark matter search (CDMS): Present status and future, AIP Conf. Proc., 2009, 1182: 260ADSCrossRefGoogle Scholar
  27. 27.
    G. Angloher, et al. [CRESST Collaboration], Results from 730 kg days of the CRESST-II dark matter search, arXiv: 1109.0702, 2011Google Scholar
  28. 28.
    J. Angle, et al. [XENON10 Collaboration], Search for light dark matter in XENON10 data, Phys. Rev. Lett., 2011, 107: 051301ADSCrossRefGoogle Scholar
  29. 29.
    R. Agnese, et al. [CDMS Collaboration], Dark matter search results using the silicon detectors of CDMS II, arXiv: 1304.4279v2, 2013Google Scholar
  30. 30.
    M. T. Frandsen, F. Kahlhoefer, C. McCabe, S. Sarkar, and K. Schmidt-Hoberg, The unbearable lightness of being: CDMS versus XENON, arXiv: 1304.6066v1, 2013Google Scholar
  31. 31.
    X. G. He and J. Tandean, Low-mass dark-matter hint from CDMS II, Higgs boson at LHC, and Darkon models, arXiv: 1304.6058v1, 2013Google Scholar
  32. 32.
    E. Aprile, et al. [XENON 100 Collaboration], Dark matter results from 225 live days of XENON100 data, arXiv: 1207.5988v2, 2013Google Scholar
  33. 33.
    J. Angle, et al. [XENON Collaboration], Limits on spin-dependent WIMP-nucleon cross-sections from the XENON10 experiment, Phys. Rev. Lett., 2008, 101(9): 091301ADSCrossRefGoogle Scholar
  34. 34.
    M. T. Ressell, M. Aufderheide, S. Bloom, K. Griest, G. Mathews, and D. Resler, Nuclear shell model calculations of neutralino-nucleus cross-sections for 29Si and 73Ge, Phys. Rev. D, 1993, 48(12): 5519ADSCrossRefGoogle Scholar
  35. 35.
    G. Griest, Cross-sections, relic abundance, and detection rates for neutralino dark matter, Phys. Rev. D, 1988, 15(8): 2357ADSCrossRefGoogle Scholar
  36. 36.
    C. L. Shan, Effects of residue background events in direct dark matter detection experiments on the estimation of the spin-independent WIMP-nucleon coupling, arXiv: 1103.4049v2, 2011Google Scholar
  37. 37.
    C. L. Shan, Estimating the spin-independent WIMP-nucleon coupling from direct dark matter detection data, arXiv: 1103.0481v2, 2011Google Scholar
  38. 38.
    V. Barger, W.-Y. Keung, and G. Shaughnessy, Spin dependence of dark matter scattering, Phys. Rev. D, 2008, 78: 056007, arXiv: 0806.1962ADSCrossRefGoogle Scholar
  39. 39.
    Y. Tzeng and T. T. S. Kuo, Dark matter-nucleus scattering, 14th International Conference on Particles and Nuclei (PANIC 96): C96-05-22, 479Google Scholar
  40. 40.
    M. T. Ressell, M. Aufderheide, S. Bloom, K. Griest, G. Mathews, and D. Resler, Nuclear shell model calculations of neutralino-nucleus cross-sections for 29Si and 73Ge, Phys. Rev. D, 1993, 48(12): 5519ADSCrossRefGoogle Scholar
  41. 41.
    M. T. Ressell and D. J. Dean, Spin-dependent neutralinonucleus scattering for A127 nuclei, Phys. Rev. C, 1997, 56(1): 535ADSCrossRefGoogle Scholar
  42. 42.
    J. Engel, S. Pittel, and P. Vogel, Nuclear physics of dark matter detection, Int. J. Mod. Phys. E, 1992, 1: 1ADSCrossRefGoogle Scholar
  43. 43.
    J. Engel, Nuclear form factors for the scattering of weakly interacting massive particles, Phys. Lett. B, 1991, 264(1–2): 114MathSciNetADSGoogle Scholar
  44. 44.
    Q. Yue, J. P. Cheng, Y. J. Li, J. Li, and Z. J. Wang, Detection of WIMPs using low threshold HPGe detector, High Energy Physics and Nuclear Physics, 2004, 28(8): 877 (in Chinese)Google Scholar
  45. 45.
    X. Li, Q. Yue, Y. J. Li, J. Li, et al., Status of ULE-HPGe detector experiment for dark matter search, High Energy Physics and Nuclear Physics, 2007, 31(6): 564 (in Chinese)Google Scholar
  46. 46.
    S. T. Lin, et al. [TEXONO Collaboration], New limits on spin-independent and spin-dependent couplings of low-mass WIMP dark matter with a germanium detector at a threshold of 220 eV, Phys. Rev. D, 2009, 79(6): 061101 (R)ADSGoogle Scholar
  47. 47.
    C. E. Aalseth, et al. [CoGeNT Collaboration], Results from a search for light-mass dark matter with a p-type point contact germanium detector, Phys. Rev. Lett., 2011, 106(13): 131301ADSCrossRefGoogle Scholar
  48. 48.
    C. E. Aalseth, et al. [CoGeNT Collaboration], Search for an annual modulation in a p-type point contact germanium dark matter detector, Phys. Rev. Lett., 2011, 107(14): 141301ADSCrossRefGoogle Scholar
  49. 49.
  50. 50.
    GERDA Collaboration, http://www.mpi-hd.mpg.de/gerda/
  51. 51.
    K. J. Kang, J. P. Cheng, Y. H. Chen, Y. J. Li, M. B. Shen, S. Y. Wu, and Q. Yue, Status and prospects of a deep underground laboratory in China, J. Phys.: Conf. Ser., 2010, 203(1): 012028ADSCrossRefGoogle Scholar
  52. 52.
    D. Normile, Chinese scientists hope to make deepest, darkest dreams come true, Science, 2009, 324(5932): 1246CrossRefGoogle Scholar
  53. 53.
    G. Heusser, Low-radioactivity background techniques, Ann. Rev. Nucl. Part. Sci., 1995, 45(1): 543ADSCrossRefGoogle Scholar
  54. 54.
  55. 55.
    Chinalco Luoyang Copper Co, Ltd, http://www.lycopper.cn
  56. 56.
  57. 57.
    Y. C. Wu, et al. [CDEX Collaboration], Measurement of cosmic ray flux in China Jinping underground laboratory, arXiv: 1305.0899, 2013Google Scholar
  58. 58.
  59. 59.
    P. N. Luke, F. S. Goulding, N. W. Madden, and R. H. Pehl, Low capacitance large volume shaped-field germanium detector, IEEE Trans. Nucl. Sci., 1989, 36(1): 926ADSCrossRefGoogle Scholar
  60. 60.
    P. S. Barbeau, J. I. Collar, and O. Tench, Large-mass ultralow noise germanium detectors: performance and applications in neutrino and astroparticle physics, J. Cosmol. Astropart. Phys., 2007, 09: 009ADSCrossRefGoogle Scholar
  61. 61.
  62. 62.
  63. 63.
    CDMS Collaboration, http://cdms.berkeley.edu
  64. 64.
    XENON Collaboration, http://xenon.astro.columbia.edu
  65. 65.
    CRESST Collaboration, http://www.cresst.de
  66. 66.
    C. Aalseth, P. S. Barbeau, J. Colaresi, J. I. Collar, et al., Search for an annual modulation in a p-type point contact germanium dark matter detector, Phys. Rev. Lett., 2011, 107(14): 141301ADSCrossRefGoogle Scholar
  67. 67.
    M. G. Marino, Dark matter physics with P-type pointcontact germanium detectors: Extending the physics reach of the Majorana experiment, Ph.D. Dissertation, University of Washington, 2010Google Scholar
  68. 68.
    From a talk given by J. F. Wilkerson in Tsinghua University in 2011Google Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ke-Jun Kang
    • 1
  • Jian-Ping Cheng
    • 1
  • Jin Li
    • 1
  • Yuan-Jing Li
    • 1
  • Qian Yue
    • 1
  • Yang Bai
    • 3
  • Yong Bi
    • 5
  • Jian-Ping Chang
    • 4
  • Nan Chen
    • 1
  • Ning Chen
    • 1
  • Qing-Hao Chen
    • 1
  • Yun-Hua Chen
    • 6
  • Yo-Chun Chuang
    • 7
  • Zhi Deng
    • 1
  • Qiang Du
    • 1
  • Hui Gong
    • 1
  • Xi-Qing Hao
    • 1
  • Hong-Jian He
    • 1
  • Qing-Ju He
    • 1
  • Xin-Hui Hu
    • 3
  • Han-Xiong Huang
    • 2
  • Teng-Rui Huang
    • 7
  • Hao Jiang
    • 1
  • Hau-Bin Li
    • 7
  • Jian-Min Li
    • 1
  • Jun Li
    • 4
  • Xia Li
    • 2
  • Xin-Ying Li
    • 3
  • Xue-Qian Li
    • 3
  • Yu-Lan Li
    • 1
  • Heng-Ye Liao
    • 7
  • Fong-Kay Lin
    • 7
  • Shin-Ted Lin
    • 7
  • Shu-Kui Liu
    • 5
  • Ya-Bin Liu
    • 1
  • Lan-Chun Lü
    • 1
  • Hao Ma
    • 1
  • Shao-Ji Mao
    • 4
  • Jian-Qiang Qin
    • 1
  • Jie Ren
    • 2
  • Jing Ren
    • 1
  • Xi-Chao Ruan
    • 2
  • Man-Bin Shen
    • 6
  • Man-Bin Shen
    • 6
  • Lakhwinder Simgh
    • 7
    • 8
  • Manoj Kumar Singh
    • 7
    • 8
  • Arun Kumar Soma
    • 7
    • 8
  • Jian Su
    • 1
  • Chang-Jian Tang
    • 5
  • Chao-Hsiung Tseng
    • 7
  • Ji-Min Wang
    • 6
  • Li Wang
    • 5
  • Qing Wang
    • 1
  • Tsz-King Henry Wong
    • 7
  • Xu-Feng Wang
    • 1
  • Shi-Yong Wu
    • 6
  • Wei Wu
    • 3
  • Yu-Cheng Wu
    • 1
  • Zhong-Zhi Xianyu
    • 1
  • Hao-Yang Xing
    • 5
  • Xun-Jie Xu
    • 1
  • Yin Xu
    • 3
  • Tao Xue
    • 1
  • Li-Tao Yang
    • 1
  • Song-Wei Yang
    • 7
  • Nan Yi
    • 1
  • Chun-Xu Yu
    • 3
  • Hao Yu
    • 1
  • Xun-Zhen Yu
    • 5
  • Xiong-Hui Zeng
    • 6
  • Zhi Zeng
    • 1
  • Lan Zhang
    • 4
  • Yun-Hua Zhang
    • 6
  • Ming-Gang Zhao
    • 3
  • Wei Zhao
    • 1
  • Su-Ning Zhong
    • 3
  • Jin Zhou
    • 6
  • Zu-Ying Zhou
    • 2
  • Jing-Jun Zhu
    • 5
  • Wei-Bin Zhu
    • 4
  • Xue-Zhou Zhu
    • 1
  • Zhong-Hua Zhu
    • 6
  • CDEX Collaboration
  1. 1.Department of Engineering PhysicsTsinghua UniversityBeijingChina
  2. 2.China Institute of Atomic EnergyBeijingChina
  3. 3.School of PhysicsNankai UniversityTianjinChina
  4. 4.NUCTECH CompanyBeijingChina
  5. 5.Department of PhysicsSichuan UniversityChengduChina
  6. 6.Yalongjiang Hydropower Development CompanyChengduChina
  7. 7.Institute of PhysicsAcademia SinicaTaipeiChina
  8. 8.Department of PhysicsBanaras Hindu UniversityVaranasiIndia

Personalised recommendations