Frontiers of Physics

, Volume 9, Issue 3, pp 351–369 | Cite as

Applications of carbon nanotubes in high performance lithium ion batteries

  • Yang Wu
  • Jiaping WangEmail author
  • Kaili Jiang
  • Shoushan Fan
Review Article


The development of lithium ion batteries (LIBs) relies on the improvement in the performance of electrode materials with higher capacity, higher rate capability, and longer cycle life. In this review article, the recent advances in Carbon nanotube (CNT) anodes, CNT-based composite electrodes, and CNT current collectors for high performance LIBs are concerned. CNT has received considerable attentions as a candidate material for the LIB applications. In addition to a possible choice for anode, CNT has been recognized as a solution in improving the performance of the state-of-the-art electrode materials. The CNT-based composite electrodes can be fabricated by mechanical or chemical approaches. Owing to the large aspect ratio and the high electrical conductivity, CNTs at very low loading can lead to an efficient conductive network. The excellent mechanical strength suggests the great potential in forming a structure scaffold to accommodate nano-sized electrode materials. Accordingly, the incorporation of CNTs will enhance the conductivity of the composite electrodes, mitigate the agglomeration problem, decrease the dependence on inactive binders, and improve the electrochemical properties of both anode and cathode materials remarkably. Freestanding CNT network can be used as lightweight current collectors to increase the overall energy density of LIBs. Finally, research perspectives for exploiting CNTs in high-performance LIBs are discussed.


lithium ion battery carbon nanotube composite conductive additive structural scaffold 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Armand and J. M. Tarascon, Nature, 2008, 451(7179): 652ADSCrossRefGoogle Scholar
  2. 2.
    B. Dunn, H. Kamath, and J.-M. Tarascon, Science, 334(6058): 928Google Scholar
  3. 3.
    J. M. Tarascon and M. Armand, Nature, 2001, 414(6861): 359ADSCrossRefGoogle Scholar
  4. 4.
    M. S. Whittingham, Science, 1976, 192(4244): 1126ADSCrossRefGoogle Scholar
  5. 5.
    M. S. Whittingham, Chem. Rev., 2004, 104(10): 4271CrossRefGoogle Scholar
  6. 6.
    K. Ozawa, Solid State Ion., 1994, 69(3–4): 212CrossRefGoogle Scholar
  7. 7.
    M. Winter, J. O. Besenhard, M. E. Spahr, and P. Novak, Adv. Mater., 1998, 10(10): 725CrossRefGoogle Scholar
  8. 8.
    H. Dai, Surface Science, 2002, 500(1–2): 218ADSCrossRefGoogle Scholar
  9. 9.
    T. W. Ebbesen, H. J. Lezec, H. Hiura, J. W. Bennett, H. F. Ghaemi, and T. Thio, Nature, 1996, 382(6586): 54ADSCrossRefGoogle Scholar
  10. 10.
    M. F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, and R. S. Ruoff, Science, 2000, 287(5453): 637ADSCrossRefGoogle Scholar
  11. 11.
    M. M. J. Treacy, T. W. Ebbesen, and J. M. Gibson, Nature, 1996, 381(6584): 678ADSCrossRefGoogle Scholar
  12. 12.
    R. Fong, U. v. Sacken, and J. R. Dahn, J. Electrochem. Soc., 1990, 137(7): 2009CrossRefGoogle Scholar
  13. 13.
    Z. X. Shu, R. S. McMillan, and J. J. Murray, J. Electrochem. Soc., 1993, 140(4): 922CrossRefGoogle Scholar
  14. 14.
    M. S. Dresselhaus and G. Dresselhaus, Adv. Phys., 1981, 30(2): 139ADSCrossRefGoogle Scholar
  15. 15.
    N. A. Kaskhedikar and J. Maier, Adv. Mater., 2009, 21(25–26): 2664CrossRefGoogle Scholar
  16. 16.
    M. Armand and P. Touzain, Materials Science and Engineering, 1977, 31(0): 319CrossRefGoogle Scholar
  17. 17.
    L. Pauling, Proc. Natl. Acad. Sci. USA, 1966, 56(6): 1646ADSCrossRefGoogle Scholar
  18. 18.
    J. R. Dahn, Phys. Rev. B, 1991, 44(17): 9170ADSCrossRefGoogle Scholar
  19. 19.
    N. Kambe, M. S. Dresselhaus, G. Dresselhaus, S. Basu, A. R. McGhie, and J. E. Fischer, Materials Science and Engineering, 1979, 40(1): 1CrossRefGoogle Scholar
  20. 20.
    T. Ohzuku, Y. Iwakoshi, and K. Sawai, J. Electrochem. Soc., 1993, 140(9): 2490CrossRefGoogle Scholar
  21. 21.
    K. Persson, Y. Hinuma, Y. S. Meng, A. Van der Ven, and G. Ceder, Phys. Rev. B, 2010, 82(12)Google Scholar
  22. 22.
    R. C. Boehm and A. Banerjee, J. Chem. Phys., 1992, 96(2): 1150ADSCrossRefGoogle Scholar
  23. 23.
    V. A. Nalimova, D. Guerard, M. Lelaurain, and O. V. Fateev, Carbon, 1995, 33(2): 177CrossRefGoogle Scholar
  24. 24.
    V. V. Avdeev, V. A. Nalimova, and K. N. Semenenko, High Pressure Res., 1990, 6(1): 11ADSCrossRefGoogle Scholar
  25. 25.
    Y. Nagata, Y. Ohnishi, H. Hatori, M. Shiraishi, and T. Kajiyama, Kobunshi Ronbunshu, 1996, 53(5): 302CrossRefGoogle Scholar
  26. 26.
    A. Yasuda, N. Kawase, F. Banhart, W. Mizutani, T. Shimizu, and H. Tokumoto, J. Phys. Chem. B, 2002, 106(8): 1849CrossRefGoogle Scholar
  27. 27.
    R. E. Franklin, Proceedings of the Royal Society of London, Series A: Mathematical and Physical Sciences, 1951, 209(1097): 196ADSCrossRefGoogle Scholar
  28. 28.
    K. Tatsumi, N. Iwashita, H. Sakaebe, H. Shioyama, S. Higuchi, A. Mabuchi, and H. Fujimoto, J. Electrochem. Soc., 1995, 142(3): 716CrossRefGoogle Scholar
  29. 29.
    N. Takami, A. Satoh, M. Hara, and T. Ohsaki, J. Electrochem. Soc., 1995, 142(2): 371CrossRefGoogle Scholar
  30. 30.
    A. Satoh, N. Takami, and T. Ohsaki, Solid State Ion., 1995, 80(3): 291CrossRefGoogle Scholar
  31. 31.
    A. Mabuchi, K. Tokumitsu, H. Fujimoto, and T. Kasuh, J. Electrochem. Soc., 1995, 142(4): 1041CrossRefGoogle Scholar
  32. 32.
    J. R. Dahn, T. Zheng, Y. Liu, and J. S. Xue, Science, 1995, 270(5236): 590ADSCrossRefGoogle Scholar
  33. 33.
    T. D. Tran, J. H. Feikert, X. Song, and K. Kinoshita, J. Electrochem. Soc., 1995, 142(10): 3297CrossRefGoogle Scholar
  34. 34.
    C. Kim, T. Fujino, K. Miyashita, T. Hayashi, M. Endo, and M. S. Dresselhaus, J. Electrochem. Soc., 2000, 147(4): 1257CrossRefGoogle Scholar
  35. 35.
    M. K. Song and K. T. No, J. Electrochem. Soc., 2004, 151(10): A1696CrossRefGoogle Scholar
  36. 36.
    T. Zheng, Y. Liu, E. W. Fuller, S. Tseng, U. v. Sacken, and J. R. Dahn, J. Electrochem. Soc., 1995, 142(8): 2581CrossRefGoogle Scholar
  37. 37.
    N. Takami, A. Satoh, T. Ohsaki, and M. Kanda, Electrochim. Acta, 1997, 42(16): 2537CrossRefGoogle Scholar
  38. 38.
    S. Iijima, Nature, 1991, 354(6348): 56ADSCrossRefGoogle Scholar
  39. 39.
    V. Meunier, J. Kephart, C. Roland, and J. Bernholc, Phys. Rev. Lett., 2002, 88(7)Google Scholar
  40. 40.
    Z. Zhou, X. P. Gao, J. Yan, D. Y. Song, and M. Morinaga, Carbon, 2004, 42(12–13): 2677CrossRefGoogle Scholar
  41. 41.
    C. Garau, A. Frontera, D. Quinonero, A. Costa, P. Ballester, and P. M. Deya, Chem. Phys. Lett., 2003, 374(5–6): 548ADSCrossRefGoogle Scholar
  42. 42.
    T. Kar, J. Pattanayak, and S. Scheiner, Journal of Physical Chemistry A, 2001, 105(45): 10397ADSCrossRefGoogle Scholar
  43. 43.
    G. Maurin, C. Bousquet, F. Henn, P. Bernier, R. Almairac, and B. Simon, Chem. Phys. Lett., 1999, 312(1): 14ADSCrossRefGoogle Scholar
  44. 44.
    A. S. Claye, J. E. Fischer, C. B. Huffman, A. G. Rinzler, and R. E. Smalley, J. Electrochem. Soc., 2000, 147(8): 2845CrossRefGoogle Scholar
  45. 45.
    B. Gao, C. Bower, J. D. Lorentzen, L. Fleming, A. Kleinhammes, X. P. Tang, L. E. McNeil, Y. Wu, and O. Zhou, Chem. Phys. Lett., 2000, 327(1–2): 69ADSCrossRefGoogle Scholar
  46. 46.
    G. L. Che, B. B. Lakshmi, E. R. Fisher, and C. R. Martin, Nature, 1998, 393(6683): 346ADSCrossRefGoogle Scholar
  47. 47.
    E. Frackowiak, S. Gautier, H. Gaucher, S. Bonnamy, and F. Beguin, Carbon, 1999, 37(1): 61CrossRefGoogle Scholar
  48. 48.
    E. Frackowiak and F. Beguin, Carbon, 2002, 40(10): 1775CrossRefGoogle Scholar
  49. 49.
    B. Gao, A. Kleinhammes, X. P. Tang, C. Bower, L. Fleming, Y. Wu, and O. Zhou, Chem. Phys. Lett., 1999, 307(3–4): 153ADSCrossRefGoogle Scholar
  50. 50.
    G. X. Wang, J. H. Ahn, J. Yao, M. Lindsay, H. K. Liu, and S. X. Dou, J. Power Sources, 2003, 119: 16ADSCrossRefGoogle Scholar
  51. 51.
    C. Masarapu, V. Subramanian, H. W. Zhu, and B. Q. Wei, Advanced Functional Materials, 2009, 19(7): 1008CrossRefGoogle Scholar
  52. 52.
    S. B. Yang, H. H. Song, X. H. Chen, A. V. Okotrub, and L. G. Bulusheva, Electrochim. Acta, 2007, 52(16): 5286CrossRefGoogle Scholar
  53. 53.
    K. L. Jiang, Q. Q. Li, and S. S. Fan, Nature, 2002, 419(6909): 801ADSCrossRefGoogle Scholar
  54. 54.
    K. L. Jiang, J. P. Wang, Q. Q. Li, L. A. Liu, C. H. Liu, and S. S. Fan, Adv. Mater., 2011, 23(9): 1154CrossRefGoogle Scholar
  55. 55.
    H. Zhang, G. P. Cao, and Y. S. Yang, Energy Environ. Sci., 2009, 2(9): 932CrossRefGoogle Scholar
  56. 56.
    S. H. Ng, J. Wang, Z. P. Guo, G. X. Wang, and H. K. Liu, Electrochim. Acta, 2005, 51(1): 23CrossRefGoogle Scholar
  57. 57.
    S. Y. Chew, S. H. Ng, J. Z. Wang, P. Novak, F. Krumeich, S. L. Chou, J. Chen, and H. K. Liu, Carbon, 2009, 47(13): 2976CrossRefGoogle Scholar
  58. 58.
    B. J. Landi, R. A. Dileo, C. M. Schauerman, C. D. Cress, M. J. Ganter, and R. P. Raffaelle, J. Nanosci. Nanotechnol., 2009, 9(6): 3406CrossRefGoogle Scholar
  59. 59.
    J. Chen, A. I. Minett, Y. Liu, C. Lynam, P. Sherrell, C. Wang, and G. G. Wallace, Adv. Mater., 2008, 20(3): 566CrossRefGoogle Scholar
  60. 60.
    G. T. Wu, C. S. Wang, X. B. Zhang, H. S. Yang, Z. F. Qi, P. M. He, and W. Z. Li, J. Electrochem. Soc., 1999, 146(5): 1696CrossRefGoogle Scholar
  61. 61.
    J. Zhao, A. Buldum, J. Han, and J. Ping Lu, Phys. Rev. Lett., 2000, 85(8): 1706ADSCrossRefGoogle Scholar
  62. 62.
    J. Li, C. Wu, and L. Guan, J. Phys. Chem. C, 2009, 113(42): 18431CrossRefGoogle Scholar
  63. 63.
    X. X. Wang, J. N. Wang, H. Chang, and Y. F. Zhang, Adv. Funct. Mater., 2007, 17(17): 3613CrossRefGoogle Scholar
  64. 64.
    D. T. Welna, L. T. Qu, B. E. Taylor, L. M. Dai, and M. F. Durstock, J. Power Sources, 2011, 196(3): 1455CrossRefGoogle Scholar
  65. 65.
    I. Lahiri, S. W. Oh, J. Y. Hwang, S. Cho, Y. K. Sun, R. Banerjee, and W. Choi, ACS Nano, 2010, 4(6): 3440CrossRefGoogle Scholar
  66. 66.
    Mukhopadhyay, I., N. Hoshino, S. Kawasaki, F. Okino, W. K. Hsu, and H. Touhara, J. Electrochem. Soc., 2002, 149(1): A39CrossRefGoogle Scholar
  67. 67.
    L. G. Bulusheva, A. V. Okotrub, A. G. Kurenya, H. K. Zhang, H. J. Zhang, X. H. Chen, and H. H. Song, Carbon, 2011, 49(12): 4013CrossRefGoogle Scholar
  68. 68.
    X. L. Li, F. Y. Kang, X. D. Bai, and W. Shen, Electrochem. Commun., 2007, 9(4): 663CrossRefGoogle Scholar
  69. 69.
    B. Jin, E. M. Jin, K. H. Park, and H. B. Gu, Electrochem. Commun., 2008, 10(10): 1537CrossRefGoogle Scholar
  70. 70.
    Liu, Y. J., X. H. Li, H. J. Guo, Z. X. Wang, W. J. Peng, Y. Yang, and R. F. Liang, J. Power Sources, 2008, 184(2): 522CrossRefGoogle Scholar
  71. 71.
    Y. Feng, Mater. Chem. Phys., 2010, 121(1–2): 302CrossRefGoogle Scholar
  72. 72.
    T. Muraliganth, A. V. Murugan, and A. Manthiram, J. Mater. Chem., 2008, 18(46): 5661CrossRefGoogle Scholar
  73. 73.
    G. P. Wang, Q. T. Zhang, Z. L. Yu, and M. Z. Qu, Solid State Ion., 2008, 179(7–8): 263Google Scholar
  74. 74.
    K. Sheem, Y. H. Lee, and H. S. Lim, J. Power Sources, 2006, 158(2): 1425CrossRefGoogle Scholar
  75. 75.
    J. H. Park, S. Y. Lee, J. H. Kim, S. Ahn, J. S. Park, and Y. U. Jeong, J. Solid State Electrochem., 2010, 14(4): 593CrossRefGoogle Scholar
  76. 76.
    J. H. Lee, G. S. Kim, Y. M. Choi, W. Il Park, J. A. Rogers, and U. Paik, J. Power Sources, 2008, 184(1): 308CrossRefGoogle Scholar
  77. 77.
    X. L. Li, F. Y. Kang, and W. C. Shen, Carbon, 2006, 44(7): 1334CrossRefGoogle Scholar
  78. 78.
    X. L. Li, F. Y. Kang, and W. C. Shen, Electrochem. Solid State Lett., 2006, 9(3): A126CrossRefGoogle Scholar
  79. 79.
    A. Varzi, C. Taubert, M. Wohlfahrt-Mehrens, M. Kreis, and W. Schutz, J. Power Sources, 2011, 196(6): 3303CrossRefGoogle Scholar
  80. 80.
    J. Y. Eom, J. W. Park, H. S. Kwon, and S. Rajendran, J. Electrochem. Soc., 2006, 153(9): A1678CrossRefGoogle Scholar
  81. 81.
    C. Sotowa, G. Origi, M. Takeuchi, Y. Nishimura, K. Takeuchi, I. Y. Jang, Y. J. Kim, T. Hayashi, Y. A. Kim, M. Endo, and M. S. Dresselhaus, ChemSusChem, 2008, 1(11): 911CrossRefGoogle Scholar
  82. 82.
    X. B. Zhang, K. L. Jiang, C. Teng, P. Liu, L. Zhang, J. Kong, T. H. Zhang, Q. Q. Li, and S. S. Fan, Adv. Mater., 2006, 18(12): 1505CrossRefGoogle Scholar
  83. 83.
    K. Liu, Y. H. Sun, L. Chen, C. Feng, X. F. Feng, K. L. Jiang, Y. G. Zhao, and S. S. Fan, Nano Lett., 2008, 8(2): 700ADSCrossRefGoogle Scholar
  84. 84.
    K. Wang, Y. Wu, S. Luo, X. F. He, J. P. Wang, K. L. Jiang, and S. S. Fan, J. Power Sources, 2013, 233(1): 209CrossRefGoogle Scholar
  85. 85.
    S. Luo, K. Wang, J. Wang, K. Jiang, Q. Li, and S. Fan, Adv. Mater., 2012, 24(17): 2294ADSCrossRefGoogle Scholar
  86. 86.
    M. D. Lima, S. Fang, X. Lepro, C. Lewis, R. Ovalle-Robles, J. Carretero-Gonzalez, E. Castillo-Martinez, M. E. Kozlov, J. Oh, N. Rawat, C. S. Haines, M. H. Haque, V. Aare, S. Stoughton, A. A. Zakhidov, and R. H. Baughman, Science, 2011, 331(6013): 51ADSCrossRefGoogle Scholar
  87. 87.
    Z. Chen, D. Q. Zhang, X. L. Wang, X. L. Jia, F. Wei, H. X. Li, and Y. F. Lu, Adv. Mater., 2012, 24(15): 2030CrossRefGoogle Scholar
  88. 88.
    O. Toprakci, H. A. K. Toprakci, L.W. Ji, G. J. Xu, Z. Lin, and X.W. Zhang, ACS AppliedMaterials & Interfaces, 2012, 4(3): 1273CrossRefGoogle Scholar
  89. 89.
    P. G. Bruce, B. Scrosati, and J.-M. Tarascon, Angewandte Chemie International Edition, 2008, 47(16): 2930CrossRefGoogle Scholar
  90. 90.
    C. M. Hayner, X. Zhao, and H. H. Kung, Annual Review of Chemical and Biomolecular Engineering, 3(1): 445Google Scholar
  91. 91.
    S.-D. Seo, G.-H. Lee, A.-H. Lim, K.-M. Min, J.-C. Kim, H.-W. Shim, K.-S. Park, and D.-W. Kim, RSC Advances, 2(8): 3315Google Scholar
  92. 92.
    W. X. Chen, J. Y. Lee, and Z. Liu, Electrochem. Commun., 2002, 4(3): 260MathSciNetCrossRefGoogle Scholar
  93. 93.
    M. S. Park, S. A. Needham, G. X. Wang, Y. M. Kang, J. S. Park, S. X. Dou, and H. K. Liu, Chem. Mat., 2007, 19(10): 2406CrossRefGoogle Scholar
  94. 94.
    O. Crosnier, T. Brousse, X. Devaux, P. Fragnaud, and D. M. Schleich, J. Power Sources, 2001, 94(2): 169ADSCrossRefGoogle Scholar
  95. 95.
    J. O. Besenhard, J. Yang, and M. Winter, J. Power Sources, 1997, 68(1): 87ADSCrossRefGoogle Scholar
  96. 96.
    T. P. Kumar, R. Ramesh, Y. Y. Lin, and G. T. K. Fey, Electrochem. Commun., 2004, 6(6): 520CrossRefGoogle Scholar
  97. 97.
    Y. Wang, and J. Y. Lee, Angew. Chem.-Int. Edit., 2006, 45(42): 7039CrossRefGoogle Scholar
  98. 98.
    L. Huang, J.-S. Cai, Y. He, F.-S. Ke, and S.-G. Sun, Electrochem. Commun., 2009, 11(5): 950CrossRefGoogle Scholar
  99. 99.
    K. D. Kepler, J. T. Vaughey, and M. M. Thackeray, Electrochem. Solid-State Lett., 1999, 2(7): 307CrossRefGoogle Scholar
  100. 100.
    C. K. Chan, R. N. Patel, M. J. O’Connell, B. A. Korgel, and Y. Cui, ACS Nano, 2010, 4(3): 1443CrossRefGoogle Scholar
  101. 101.
    C. Martin, O. Crosnier, R. Retoux, D. Belanger, D. M. Schleich, and T. Brousse, Adv. Funct. Mater., 2011, 21(18): 3524CrossRefGoogle Scholar
  102. 102.
    G. Chen, Z. Y. Wang, and D. G. Xia, Chem. Mat., 2008, 20(22): 6951CrossRefGoogle Scholar
  103. 103.
    Z. H. Wen, Q. Wang, Q. Zhang, and J. H. Li, Adv. Funct. Mater., 2007, 17(15): 2772CrossRefGoogle Scholar
  104. 104.
    L. Noerochim, J. Z. Wang, S. L. Chou, H. J. Li, and H. K. Liu, Electrochim. Acta, 2010, 56(1): 314CrossRefGoogle Scholar
  105. 105.
    H. X. Zhang, C. Feng, Y. C. Zhai, K. L. Jiang, Q. Q. Li, and S. S. Fan, Adv. Mater., 2009, 21(22): 2299CrossRefGoogle Scholar
  106. 106.
    J. Xie and V. K. Varadan, Mater. Chem. Phys., 2005, 91(2–3): 274CrossRefGoogle Scholar
  107. 107.
    G. M. An, N. Na, X. R. Zhang, Z. J. Miao, S. D. Miao, K. L. Ding, and Z. M. Liu, Nanotechnology, 2007, 18(43)Google Scholar
  108. 108.
    Y. B. Fu, R. B. Ma, Y. Shu, Z. Cao, and X. H. Ma, Mater. Lett., 2009, 63(22): 1946CrossRefGoogle Scholar
  109. 109.
    G. D. Du, C. Zhong, P. Zhang, Z. P. Guo, Z. X. Chen, and H. K. Liu, Electrochim. Acta, 2010, 55(7): 2582CrossRefGoogle Scholar
  110. 110.
    C. H. Xu, J. Sun, and L. Gao, J. Phys. Chem. C, 2009, 113(47): 20509CrossRefGoogle Scholar
  111. 111.
    Z. Y. Wang, G. Chen, and D. G. Xia, J. Power Sources, 2008, 184(2): 432CrossRefGoogle Scholar
  112. 112.
    P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, and J. M. Tarascon, Nature, 2000, 407(6803): 496ADSCrossRefGoogle Scholar
  113. 113.
    J. Cabana, L. Monconduit, D. Larcher, and M. R. Palacin, Adv. Mater., 2010, 22(35): E170CrossRefGoogle Scholar
  114. 114.
    C. M. Ban, Z. C. Wu, D. T. Gillaspie, L. Chen, Y. F. Yan, J. L. Blackburn, and A. C. Dillon, Adv. Mater., 2010, 22(20): E145CrossRefGoogle Scholar
  115. 115.
    A. L. M. Reddy, M. M. Shaijumon, S. R. Gowda, and P. M. Ajayan, Nano Lett., 2009, 9(3): 1002ADSCrossRefGoogle Scholar
  116. 116.
    F. Teng, S. Santhanagopalan, and D. D. Meng, Solid State Sci., 2010, 12(9): 1677ADSCrossRefGoogle Scholar
  117. 117.
    Z. Wang, D. Luan, S. Madhavi, Y. Hu, and X. W. Lou, Energy Environ. Sci., 2012, 5(1): 5252CrossRefGoogle Scholar
  118. 118.
    Y. He, L. Huang, J. S. Cai, X. M. Zheng, and S. G. Sun, Electrochim. Acta, 2010, 55(3): 1140CrossRefGoogle Scholar
  119. 119.
    H. Xia, M. O. Lai, and L. Lu, J. Mater. Chem., 2010, 20(33): 6896CrossRefGoogle Scholar
  120. 120.
    G. X. Wang, X. P. Shen, J. N. Yao, D. Wexler, and J. Ahn, Electrochem. Commun., 2009, 11(3): 546CrossRefGoogle Scholar
  121. 121.
    A. R. Armstrong, G. Armstrong, J. Canales, R. Garcia, and P. G. Bruce, Adv. Mater., 2005, 17(7): 862CrossRefGoogle Scholar
  122. 122.
    P. Liu, S. H. Lee, C. e. Tracy, Y. Yan, and J. a. Turner, Adv. Mater., 2002, 14(1): 27CrossRefGoogle Scholar
  123. 123.
    C. M. Julien, Materials Science and Engineering: R: Reports, 2003, 40(2): 47CrossRefGoogle Scholar
  124. 124.
    Y. S. Hu, L. Kienle, Y. G. Guo, and J. Maier, Adv. Mater., 2006, 18(11): 1421CrossRefGoogle Scholar
  125. 125.
    Z. X. Yang, G. D. Du, Z. P. Guo, X. B. Yu, Z. X. Chen, T. L. Guo, and H. K. Liu, J. Mater. Chem., 2011, 21(24): 8591CrossRefGoogle Scholar
  126. 126.
    L. Shen, C. Yuan, H. Luo, X. Zhang, K. Xu, and F. Zhang, J. Mater. Chem., 2011, 21(3): 761CrossRefGoogle Scholar
  127. 127.
    J. J. Huang and Z. Y. Jiang, Electrochim. Acta, 2008, 53(26): 7756CrossRefGoogle Scholar
  128. 128.
    F. F. Cao, Y. G. Guo, S. F. Zheng, X. L. Wu, L. Y. Jiang, R. R. Bi, L. J. Wan, and J. Maier, Chem. Mat., 2010, 22(5): 1908CrossRefGoogle Scholar
  129. 129.
    D. H. Lee, D. W. Kim, and J. G. Park, Cryst. Growth Des., 2008, 8(12): 4506CrossRefGoogle Scholar
  130. 130.
    J. S. Sakamoto and B. Dunn, J. Electrochem. Soc., 2002, 149(1): A26CrossRefGoogle Scholar
  131. 131.
    X. Jia, Z. Chen, A. Suwarnasarn, L. Rice, X. Wang, H. Sohn, Q. Zhang, B. M. Wu, F. Wei, and Y. Lu, Energy Environ. Sci., 2012, 5(5): 6845CrossRefGoogle Scholar
  132. 132.
    X. M. Liu, Z. D. Huang, S. Oh, P. C. Ma, P. C. H. Chan, G. K. Vedam, K. Kang, and J. K. Kim, J. Power Sources, 2010, 195(13): 4290CrossRefGoogle Scholar
  133. 133.
    J. Xu, G. Chen, and X. Li, Mater. Chem. Phys., 2009, 118(1): 9MathSciNetCrossRefGoogle Scholar
  134. 134.
    Y. Zhou, J. Wang, Y. Hu, R. O’Hayre, and Z. Shao, Chemical Communications, 2010, 46(38): 7151CrossRefGoogle Scholar
  135. 135.
    C. Ban, Z. Li, Z. Wu, M. J. Kirkham, L. Chen, Y. S. Jung, E. A. Payzant, Y. Yan, M. S. Whittingham, and A. C. Dillon, Adv. Energy Mater., 2011, 1(1): 58CrossRefGoogle Scholar
  136. 136.
    J. J. Chen and M. S. Whittingham, Electrochem. Commun., 2006, 8(5): 855CrossRefGoogle Scholar
  137. 137.
    L. Wang, Y. D. Huang, R. R. Jiang, and D. Z. Jia, J. Electrochem. Soc., 2007, 154(11): A1015CrossRefGoogle Scholar
  138. 138.
    Y. Q. Qiao, J. P. Tu, Y. J. Mai, L. J. Cheng, X. L. Wang, and C. D. Gu, J. Alloy. Compd., 2011, 509(25): 7181CrossRefGoogle Scholar
  139. 139.
    K. Evanoff, J. Khan, A. A. Balandin, A. Magasinski, W. J. Ready, T. F. Fuller, and G. Yushin, Adv. Mater., 2012, 24(4): 533CrossRefGoogle Scholar
  140. 140.
    X. Chen, H. Zhu, Y.-C. Chen, Y. Shang, A. Cao, L. Hu, and G. W. Rubloff, ACS Nano, 2012, 6(9): 7948CrossRefGoogle Scholar
  141. 141.
    D. R. Rolison, J. W. Long, J. C. Lytle, A. E. Fischer, C. P. Rhodes, T. M. McEvoy, M. E. Bourg, and A. M. Lubers, Chem. Soc. Rev., 2008, 38(1): 226CrossRefGoogle Scholar
  142. 142.
    I. S. Hwang, J. C. Kim, S. D. Seo, S. Lee, J. H. Lee, and D. W. Kim, Chem. Commun., 2012, 48(56): 7061CrossRefGoogle Scholar
  143. 143.
    W. Wang and P. N. Kumta, ACS Nano, 2010, 4(4): 2233CrossRefGoogle Scholar
  144. 144.
    L. F. Cui, L. B. Hu, J. W. Choi, and Y. Cui, ACS Nano, 2010, 4(7): 3671CrossRefGoogle Scholar
  145. 145.
    Y. Wu, Y. Wei, J. P. Wang, K. L. Jiang, and S. S. Fan, Nano Lett., 2013, 13(2): 818ADSCrossRefGoogle Scholar
  146. 146.
    B. A. Johnson and R. E. White, J. Power Sources, 1998, 70(1): 48ADSCrossRefGoogle Scholar
  147. 147.
    P. Arora, R. E. White, and M. Doyle, J. Electrochem. Soc., 1998, 145(10): 3647CrossRefGoogle Scholar
  148. 148.
    J. W. Braithwaite, A. Gonzales, G. Nagasubramanian, S. J. Lucero, D. E. Peebles, J. A. Ohlhausen, and W. R. Cieslak, J. Electrochem. Soc., 1999, 146(2): 448CrossRefGoogle Scholar
  149. 149.
    A. Kiebele and G. Gruner, Appl. Phys. Lett., 2007, 91(14)Google Scholar
  150. 150.
    Y. X. Zhou, L. B. Hu, and G. Gruner, Appl. Phys. Lett., 2006, 88(12)Google Scholar
  151. 151.
    L. B. Hu, J. W. Choi, Y. Yang, S. Jeong, F. La Mantia, L. F. Cui, and Y. Cui, Proc. Natl. Acad. Sci. USA, 2009, 106(51): 21490ADSCrossRefGoogle Scholar
  152. 152.
    N. Singh, C. Galande, A. Miranda, A. Mathkar, W. Gao, A. L. M. Reddy, A. Vlad, and P. M. Ajayan, Sci. Rep., 2012, 2Google Scholar
  153. 153.
    L. B. Hu, H. Wu, F. La Mantia, Y. A. Yang, and Y. Cui, ACS Nano, 2010, 4(10): 5843CrossRefGoogle Scholar
  154. 154.
    B. J. Landi, M. J. Ganter, C. D. Cress, R. A. DiLeo, and R. P. Raffaelle, Energy Environ. Sci., 2009, 2(6): 638CrossRefGoogle Scholar
  155. 155.
    K. Wang, S. Luo, Y. Wu, X. F. He, F. Zhao, J. P. Wang, K. L. Jiang, and S. S. Fan, Adv. Funct. Mater., 2013, 23(7): 846CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Yang Wu
    • 1
  • Jiaping Wang
    • 1
    Email author
  • Kaili Jiang
    • 1
  • Shoushan Fan
    • 1
  1. 1.Department of Physics and Tsinghua-Foxconn Nanotechnology Research CenterTsinghua UniversityBeijingChina

Personalised recommendations