Advertisement

Frontiers of Physics

, Volume 7, Issue 4, pp 471–480 | Cite as

Theoretical prediction of cosmological constant Λ in Veneziano ghost theory of QCD

  • Wei-Xing Ma
  • Li-Juan Zhou
  • Tong-Quan Yuan
  • Jin-Song Peng
  • Xiao Lu
  • Ji-Huan Pan
  • Guang-Xiong Peng
  • Cheng-Ju Meng
Research Article
  • 53 Downloads

Abstract

Based on the Veneziano ghost theory of QCD, we predict the cosmological constant Л, which is related to energy density of cosmological vacuum by \( \Lambda = \frac{{8\pi G}} {3}\rho _\Lambda \). In the Veneziano ghost theory, the vacuum energy density ρ Л is expressed by absolute value of the product of quark vacuum condensate and quark current mass: \( \rho _\Lambda = \frac{{2N_f H}} {{m_{\eta '} }}c|m_q < 0|:\bar qq:|0 > | \). We calculate the quark local vacuum condensates 〈0|: \( \bar q \) q: |0〉 by solving Dyson-Schwinger Equations for a fully dressed confining quark propagator S f (p) with an effective gluon propagator G µν ab (q). The quark current mass m q is predicted by use of chiral perturbation theory. Our theoretical result of Л, with the resulting 〈0|: 471-4 q: |0〉 = −(235 MeV)3 and light quark current mass m q ≃ 3.29–6.15 MeV, is in a good agreement with the observable of the Л ≈ 10−52 m−2 used widely in a great amount of literatures.

Keywords

cosmological constant Л Veneziano ghost theory of QCD local quark vacuum condensate quantum chromodynamics (QCD) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and notes

  1. 1.
    J. B. Hartle, Gravity: An Introduction to Einstein’s General Relativity, Pearson Education Asia Limited and Beijing World Publishing Corporation, 2008Google Scholar
  2. 2.
    D. Stojkovic, G. D. Starkman, and R. Matsui, Phys. Rev. D, 2008. 77(6): 063006ADSCrossRefGoogle Scholar
  3. 3.
    P. Batra, K. Hinterbichler, L. Hui, and D. Kabat, arXiv: 0801.4526, 2008Google Scholar
  4. 4.
    A. Einstein, Die Feldgleichungen der Gravitation, Sitzungsberichte der Preussischen Akademie der models, 25 Nov., 1915: 387Google Scholar
  5. 5.
    J. B. Hartle, Gravity: An Introduction to Einstein’s General Relativity, Addison Wesley, 2008, Chap. 22: 482Google Scholar
  6. 6.
    A. G. Riess, A. V. Filippenko, P. Challis, et al., Astron. J., 1998, 116(3): 1009; arXiv: astro-ph/9805201,1998ADSCrossRefGoogle Scholar
  7. 7.
    A. Tawfik, AIP Conf. Proc., 2009, 115: 0239ADSCrossRefGoogle Scholar
  8. 8.
    S. Perlmutter, et al. [Supernova Cosmology Project Collaboration], Astrophys. J. 1999, 517(2), 565; arXiv: astro-ph/9812133, 1998ADSCrossRefGoogle Scholar
  9. 9.
    D. N. Spergel, L. Verde, H. V. Peiris, et al., J. Suppl., 2003, 148(1): 175; arXiv: astro-ph/0302209, 2003ADSCrossRefGoogle Scholar
  10. 10.
    E. Hubble, Proc. Nat. Acad. Sci. USA, 1929, 15(3): 168ADSzbMATHCrossRefGoogle Scholar
  11. 11.
    H. Stefaecic, Phys. Lett. B, 2009, 670: 246; arXiv: 0807.3692v2, 2008ADSCrossRefGoogle Scholar
  12. 12.
    Y. Z. Zeldovich, JETP Lett., 1967, 6: 316ADSGoogle Scholar
  13. 13.
    S. Weinberg, Rev. Mod. Phys., 1989, 61(1): 1MathSciNetADSzbMATHCrossRefGoogle Scholar
  14. 14.
    M. Sami, arXiv: 0904.3445v3, 2009Google Scholar
  15. 15.
    V. Sahni, AIP Conf. Proc., 2005, 782: 166ADSCrossRefGoogle Scholar
  16. 16.
    N. J. cornish, Int. J. Mod. Phys. A, 2002, 17(51): 180Google Scholar
  17. 17.
  18. 18.
    G. Veneziano, Nucl. Phys. B, 1979, 159(1–2): 213MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    G. M. Shore, Lect. Notes Phys., 2008, 737: 235; arXiv: hepph/0701171, 2007MathSciNetADSCrossRefGoogle Scholar
  20. 20.
    F. R. Urban and A. R. Zhitnitsky, Phys. Lett. B, 2010, 688: 9; arXiv: 0906.2162, 2009ADSCrossRefGoogle Scholar
  21. 21.
    F. R. Urban and A. R. Zhitnitsky, Phys. Rev. D, 2009, 80: 063001; arXiv: 0906.2165v2, 2009ADSCrossRefGoogle Scholar
  22. 22.
    F. J. Dyson, Phys. Rev., 1949, 75(11): 1736MathSciNetADSzbMATHCrossRefGoogle Scholar
  23. 23.
    J. Schwinger, Proc. Natl. Acad. Sci. USA, 1951, 37(7): 452MathSciNetADSCrossRefGoogle Scholar
  24. 24.
    J. Gasser and H. Leutwyler, Ann. Phys., 1984, 158(1): 142MathSciNetADSCrossRefGoogle Scholar
  25. 25.
    J. Gasser and H. Leutwyler, Phys. Rep., 1982, 87: 77ADSCrossRefGoogle Scholar
  26. 26.
    M. Golterman, arXiv: 0912.4042v4, 2009Google Scholar
  27. 27.
    E. Witten, Nucl. Phys. B, 1979, 156(2): 269MathSciNetADSCrossRefGoogle Scholar
  28. 28.
    J. D. Barrow and D. J. Shaw, Phys. Rev. Lett., 2011, 1: 10130; arXiv: 1007.3086v3, 2011Google Scholar
  29. 29.
    H. Hata, T. Kugo, and N. Ohta, Nucl. Phys. B, 1981, 178(3): 527ADSCrossRefGoogle Scholar
  30. 30.
    T. D. Lee, Trans. N.Y. Acad. Sci., 1980, 40: 111CrossRefGoogle Scholar
  31. 31.
    L. J. Zhou and W. X. Ma, Chin. Phys. Lett., 2003, 20: 2137ADSCrossRefGoogle Scholar
  32. 32.
    L. J. Zhou and W. X. Ma, Chin. Phys. Lett., 2004, 21: 1471ADSCrossRefGoogle Scholar
  33. 33.
    W. F. Buker, Phys. Rev. Lett., 1964, 12(5): 132ADSCrossRefGoogle Scholar
  34. 34.
    P. W. Higgs, Phys. Rev., 1966, 145(4): 1156MathSciNetADSCrossRefGoogle Scholar
  35. 35.
    B. Muller, Acta. Phys. Pol. B, 2007, 38: 3705ADSGoogle Scholar
  36. 36.
    S. Heinemeyer, arXiv: 0912.0361, 2009Google Scholar
  37. 37.
    L. J. Zhou, R. G. Ping, and W. X. Ma, Commun. Theor. Phys., 2003, 40: 558Google Scholar
  38. 38.
    L. J. Zhou, R. G. Ping, and W. X. Ma, Commun. Theor. Phys., 2004, 42: 875Google Scholar
  39. 39.
    W. X. Ma, P. N. Shen, and L. J. Zhou, Commun. Theor. Phys., 2002, 38: 371Google Scholar
  40. 40.
    E. E. Salpeter and H. A. Bethe, Phys. Rev., 1951, 84(6): 1232MathSciNetADSzbMATHCrossRefGoogle Scholar
  41. 41.
    E. E. Salpeter, Phys. Rev., 1952, 87(2): 328ADSzbMATHCrossRefGoogle Scholar
  42. 42.
    H. A. Bethe and E. E. Salpeter, Phys. Rev., 1951, 82: 309MathSciNetGoogle Scholar
  43. 43.
    H. H. Matevosyan, A. W. Thomas, and P. C. Tandy, arXiv: nucl-th/0605057, 2006Google Scholar
  44. 44.
    P. Maris, C. D. Roberts, and P. C. Tandy, Phys. Lett. B, 1998, 420(3–4): 267ADSGoogle Scholar
  45. 45.
    L. J. Zhou and W. X. Ma, Commun. Theor. Phys., 2006, 45: 1085ADSCrossRefGoogle Scholar
  46. 46.
    H. Leutwyler, arXiv: 0911.1416v1, 2009Google Scholar
  47. 47.
    J. C. Ward, Phys. Rev., 1950, 78(2): 182ADSzbMATHCrossRefGoogle Scholar
  48. 48.
    Y. Takahashi, Nuovo Cimento, 1957, 6: 370Google Scholar
  49. 49.
    W. Marciano and H. Pagels, Phys. Rep., 1978, 36(3): 137ADSCrossRefGoogle Scholar
  50. 50.
    A. G. Williams, G. Krein, and C. D. Roberts, Ann. Phys., 1991, 210(2): 464ADSCrossRefGoogle Scholar
  51. 51.
    S. J. Stainsby and R. T. Cahill, Int. J. Mod. Phys. A, 1992, 7: 7541ADSCrossRefGoogle Scholar
  52. 52.
    C. D. Roberts, R. T. Cahill, M. E. Sevior, and N. Iannella, Phys. Rev. D, 1994, 49(1): 125ADSCrossRefGoogle Scholar
  53. 53.
    L. J. Zhou, Q. Wu, J. H. Pan, C. J. Meng, W. X. Ma, and X. G. Li, Commun. Theor. Phys., 2006, 46: 101ADSCrossRefGoogle Scholar
  54. 54.
    X. R. He, L. J. Zhou, and W. X. Ma, Commun. Theor. Phys., 2005, 45(4): 670ADSCrossRefGoogle Scholar
  55. 55.
    L. S. Kisslinger and T. Meissner, Phys. Rev. C, 1998, 57(3): 1528ADSCrossRefGoogle Scholar
  56. 56.
    M. R. Frank and T. Meissner, Phys. Rev. C, 1996, 53(5): 2410ADSCrossRefGoogle Scholar
  57. 57.
    L. S. Kisslinger, M. Aw. A. Harey, and O. Linsuain, Phys. Rev. C, 1999, 60(6): 065204ADSCrossRefGoogle Scholar
  58. 58.
    L. J. Zhou and W. X. Ma, Commun. Theor. Phys., 2006, 45: 675ADSCrossRefGoogle Scholar
  59. 59.
    M. R. Frank and T. Meissner, arXiv: nucl-th/9511016v2, 1995Google Scholar
  60. 60.
    C. D. Roberts and A. G. Williams, Prog. Part. Nucl. Phys., 1994, 33: 477ADSCrossRefGoogle Scholar
  61. 61.
    W. X. Ma, L. J. Zhou, Y. T. Gu, and R. G. Ping, Commun. Theor. Phys., 2005, 44(2): 333ADSCrossRefGoogle Scholar
  62. 62.
    L. J. Zhou, L. S. Kisslinger, and W. X. Ma, Phys. Rev. D, 2010, 82(2): 034037ADSCrossRefGoogle Scholar
  63. 63.
    M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, Nucl. Phys. B, 1979, 147(5): 385ADSCrossRefGoogle Scholar
  64. 64.
    S. Narison, Spectral QCD Sum Rule, Singapore: World Scientific, 1998Google Scholar
  65. 65.
    M. V. Polyakov and C. Weiss, Phys. Lett. B, 1996, 387(4): 841ADSCrossRefGoogle Scholar
  66. 66.
    H. G. Dosch and S. Narison, Phys. Lett. B, 1998, 417(1–2): 173ADSGoogle Scholar
  67. 67.
    M. Kremer and G. Schierholz, Phys. Lett. B, 1987, 194: 283ADSCrossRefGoogle Scholar
  68. 68.
    D. B. Leinweber, Report No. DOE/Er/40427-17-N 95Google Scholar
  69. 69.
    L. Giusti, Nucl. Phys. B, 1999, 538(1–2): 249ADSCrossRefGoogle Scholar
  70. 70.
    P. Hernandez, Nucl. Phys. B, 2002, 106(1): 766Google Scholar
  71. 71.
    M. Jamin, J. A. Oller, and A. Pich, Eur. Phys. J. C, 2002, 24(2): 237ADSCrossRefGoogle Scholar
  72. 72.
    T. Doi, N. Ishii, M. Oka, and H. Suganuma, Nucl. Phys. A, 2003, 721: C934ADSCrossRefGoogle Scholar
  73. 73.
    V. M. Belyaev and B. L. Iofe, Sov. Phys. JETP, 1982, 56: 493Google Scholar
  74. 74.
    D. Becirevic, H. Boucaud, J. D. Leroy, et al., Phys. Rev. D, 2000, 61(11): 114508ADSCrossRefGoogle Scholar
  75. 75.
    J. Gasser and H. Leutwyler, Nucl. Phys. B, 1985, 250(1–4): 465ADSCrossRefGoogle Scholar
  76. 76.
    J. Gasser, Lect. Notes Phys., 2004, 629: 1ADSCrossRefGoogle Scholar
  77. 77.
    M. Gell-Mann, R. J. Oakes, and B. Renner, Phys. Rev., 1968, 175(5): 2195ADSCrossRefGoogle Scholar
  78. 78.
    L. J. Zhou, S. M. Qin, Q. Wu, and W. X. Ma, Science in China, 2008, 51: 1439CrossRefGoogle Scholar
  79. 79.
    Y. T. Gu, S. M. Qin, L. J. Zhou, and W. X. Ma, Commun. Theor. Phys., 2008, 50: 1205ADSCrossRefGoogle Scholar
  80. 80.
    V. Lubicz, Nucl. Phys. B, 2001, 94(1–3): 116Google Scholar
  81. 81.
    H. Leutwyler, Phys. Lett. B, 1996, 378(1–4): 313ADSGoogle Scholar
  82. 82.
    S. Weinberg, Trans. N.Y. Acad. Sci., 1977, 38: 185CrossRefGoogle Scholar
  83. 83.
    M. D. Morte, R. Hoffman, F. Knechtli, et al., Nonperturbative quark mass renormalization in two-flavor QCD, DESY 05-124, HU-EP 05/31, DFB/CPP-05-32Google Scholar
  84. 84.
    V. Lubicz, Nucl. Phys. B, 2001, 94(1–3): 116Google Scholar
  85. 85.
    M. D. Scadron, R. Delbourgo, and G. Rupp, arXiv: hepph/0603196v1, 2006Google Scholar
  86. 86.
    E. Komatsu, et al., Astrophys. J. Suppl., 2011, 192: 18; arXiv: 1001.4538v3, 2010ADSCrossRefGoogle Scholar
  87. 87.
    J. Praschifka, R. T. Cahill, and C. D. Roberts, Int. J. Mod. Phys. A, 1989, 4(18): 4929ADSCrossRefGoogle Scholar
  88. 88.
    L. Iorio, Mon. Not. Roy. Astron. Soc., 2010, 403: 1469; arXiv: 0911.2189v3, 2009ADSCrossRefGoogle Scholar
  89. 89.
    M. Tegmark, M. A. Strauss, M. R. Blanton, et al., Phys. Rev. D, 2004, 69(10): 103501ADSCrossRefGoogle Scholar
  90. 90.
    N. Ohta, Phys. Lett. B, 2011, 695: 41; arXiv: 1010.1339v3, 2010ADSCrossRefGoogle Scholar
  91. 91.
    J. B. Kogut and L. Susskind, Phys. Rev. D, 1975, 11(12): 3594ADSCrossRefGoogle Scholar
  92. 92.
    R. L. Arnowitt and P. Nath, Phys. Rev. D, 1981, 23(2): 473ADSCrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Wei-Xing Ma
    • 1
  • Li-Juan Zhou
    • 2
  • Tong-Quan Yuan
    • 3
  • Jin-Song Peng
    • 3
  • Xiao Lu
    • 4
  • Ji-Huan Pan
    • 3
  • Guang-Xiong Peng
    • 1
  • Cheng-Ju Meng
    • 3
  1. 1.Institute of High Energy PhysicsChinese Academy of SciencesBeijingChina
  2. 2.Department of Information and Computing ScienceGuangxi University of TechnologyLiuzhouChina
  3. 3.Department of Physics and Electronic EngineeringHeChi UniversityYizhouChina
  4. 4.College of Physics and TechnologyGuangxi Normal UniversityGuilinChina

Personalised recommendations