Frontiers of Physics

, Volume 7, Issue 6, pp 649–669 | Cite as

Generation and expansion of laser-induced plasma as a spectroscopic emission source

  • Jin Yu (俞进)
  • Qianli Ma (马千里)
  • Vincent Motto-Ros
  • Wenqi Lei (雷文奇)
  • Xiaochun Wang (王晓纯)
  • Xueshi Bai (白雪石)
Review Article


Laser-induced plasma represents today a widespread spectroscopic emission source. It can be easily generated using compact and reliable nanosecond pulsed laser on a large variety of materials. Its application for spectrochemical analysis for example with laser-induced breakdown spectroscopy (LIBS) has become so popular that one tends to forget the complex physical and chemical processes leading to its generation and governing its evolution. The purpose of this review article is to summarize the backgrounds necessary to understand and describe the laser-induced plasma from its generation to its expansion into the ambient gas. The objective is not to go into the details of each process; there are numerous specialized papers and books for that in the literature. The goal here is to gather in a same paper the essential understanding elements needed to describe laser-induced plasma as results from a complex process. These elements can be dispersed in several related but independent fields such as laser-matter interaction, laser ablation of material, optical and thermodynamic properties of hot and ionized gas, or plasma propagation in a background gas. We believe that presenting the ensemble of understanding elements of laser-induced plasma in a comprehensive way and in limited pages of this paper will be helpful for further development and optimized use of the LIBS technique. Experimental results obtained in our laboratory are used to illustrate the studied physical processes each time such illustration becomes possible and helpful.


laser ablation laser-induced plasma plasma propagation plasma diagnostics plasma emission laser-induced breakdown spectroscopy (LIBS) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and notes

  1. 1.
    J. L. Delcroix and A. Bers, Physique des Plasmas, Paris: InterEditions/CNRS Editions, 1994Google Scholar
  2. 2.
    M. Capitellia, A. Casavola, G. Colonna, and A. De Giacomo, Spectrochim. Acta. B, 2004, 59: 271ADSCrossRefGoogle Scholar
  3. 3.
    L. J. Radziemski, Spectrochim. Acta. B, 2002, 57: 1109ADSCrossRefGoogle Scholar
  4. 4.
    J. D. Winefordner, I. B. Gornushkin, T. Correll, E. Gibb, B. W. Smith, and N. Omenetto, J. Anal. At. Spectrom., 2004, 19(9): 1061CrossRefGoogle Scholar
  5. 5.
    D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy, Chichester: Wiley, 2006CrossRefGoogle Scholar
  6. 6.
    A. W. Miziolek, V. Palleschi, and I. Schechter (Eds.), Laser-Induced Breakdown Spectroscopy: Fundamentals and Applications, Cambridge: University Press, 2006Google Scholar
  7. 7.
    J. P. Singh and S. N. Thakur, Laser-Induced Breakdown Spectroscopy, Elsevier, 2007Google Scholar
  8. 8.
    R. Noll, Laser-Induced Breakdown Spectroscopy: Fundamentals and Applications, Berlin Heidelberg: Springer-Verlag, 2012CrossRefGoogle Scholar
  9. 9.
    F. Brech and L. Cross, Appl. Spectrosc., 1962, 16: 59Google Scholar
  10. 10.
    J. Debras-Guédon and N. Liodec, C. R. Acad. Sci., 1963, 257: 3336Google Scholar
  11. 11.
    D. A. Cremers and L. J. Radziemski, Anal. Chem., 1983, 55(8): 1252CrossRefGoogle Scholar
  12. 12.
    D. A. Cremers and R. C. Chinni, Appl. Spectrosc. Rev., 2009, 44(6): 457ADSCrossRefGoogle Scholar
  13. 13.
    R. Gaudiuso, M. Dell’Aglio, O. De Pascale, G. S. Senesi, and A. De Giacomo, Sensors, 2010, 10(8): 7434CrossRefGoogle Scholar
  14. 14.
    F. C. De Lucia Jr., R. S. Harmon, K. L. McNesby, R. J. Wonkel Jr., and A. W. Miziolek, Appl. Opt., 2003, 42(30): 6148ADSCrossRefGoogle Scholar
  15. 15.
    M. Baudelet, L. Guyon, J. Yu, J. P. Wolf, T. Amodeo, E. Fréjafon, and P. Laloi, Appl. Phys. Lett., 2006, 88(6): 063901ADSCrossRefGoogle Scholar
  16. 16.
    M. Baudelet, J. Yu, M. Bossu, J. Jovelet, J. P. Wolf, T. Amodeo, E. Fréjafon, and P. Laloi, Appl. Phys. Lett., 2006, 89(16): 163903ADSCrossRefGoogle Scholar
  17. 17.
    F. Y. Yueh, A. Kumar, and J. P. Singh, Laser-Induced Breakdown Spectroscopy, Ch. 14, edited by J. P. Singh and S. N. Thakur, Elsevier, 2007Google Scholar
  18. 18.
    V. Juvé, R. Portelli, M. Boueri, M. Baudelet, and J. Yu, Spectrochim. Acta. B, 2008, 63: 1047ADSCrossRefGoogle Scholar
  19. 19.
    A. I. Whitehouse, J. Young, I. M. Botheroyd, S. Lawson, C. P. Evans, and J. Wright, Spectrochim. Acta. B, 2001, 56: 821ADSCrossRefGoogle Scholar
  20. 20.
  21. 21.
    J. B. Sirven, B. Sallé, P. Mauchien, J. L. Lacour, S. Maurice, and G. Manhès, J. Anal. At. Spectrom., 2007, 22(12): 1471CrossRefGoogle Scholar
  22. 22.
    I. B. Gornushkin and U. Panne, Spectrochim. Acta. B, 2010, 65: 345ADSCrossRefGoogle Scholar
  23. 23.
    D. W. Hahn and N. Omenetto, Appl. Spectrosc., 2010, 64(12): 335AADSCrossRefGoogle Scholar
  24. 24.
    E. Gamaly, Phys. Rep., 2011, 508(4–5): 91ADSCrossRefGoogle Scholar
  25. 25.
    E. Gamaly, Femtosecond Laser-Matter Interactions: Theory, Experiments and Applications, Singapore: Pan Stanford Publishing, 2011Google Scholar
  26. 26.
    M. Fox, Optical Properties of Solids, Oxford: Oxford University Press, 2010Google Scholar
  27. 27.
    N. W. Ashcrotf and N. D. Mermin, Solid State Physics, Philadelphia: CBS Publishing Asia LTD, 1976Google Scholar
  28. 28.
    Ch. Kittel, Introduction to Solid State Physics, John Wiley & Sons Inc., 2005Google Scholar
  29. 29.
    P. Drude, Annalen der Physik, 1900, 1: 566; P. Drude, Annalen der Physik, 1900, 3: 396ADSMATHCrossRefGoogle Scholar
  30. 30.
    M. von Allmen and A. Baltter, Laser-Beam Interaction with Materials, Berlin Heidelberg: Springer, 1995CrossRefGoogle Scholar
  31. 31.
    American Institute of Physics (AIP) Handbook, 3rd Ed., New York: McGraw-Hill, 1972Google Scholar
  32. 32.
    K. Ujihara, J. Appl. Phys., 1972, 43(5): 2376ADSCrossRefGoogle Scholar
  33. 33.
    P. W. Chan, Y. W. Chan, and H. S. Ng, Phys. Lett. A, 1977, 61(3): 151ADSCrossRefGoogle Scholar
  34. 34.
    N. Bityurin, B. S. Luk’yanchuk, M. H. Hong, and T. C. Chong, Chem. Rev., 2003, 103(2): 516CrossRefGoogle Scholar
  35. 35.
    D. Bäuerle, Laser Processing and Chemistry, 3rd Edition, Berlin: Springer, 2000Google Scholar
  36. 36.
    A. Vogel and V. Venugopalan, Chem. Rev., 2003, 103(2): 577CrossRefGoogle Scholar
  37. 37.
    L. Urech and Th. Lippert, Photoablation of Polymer Materials, in Photochemistry and Photophysics of Polymer Materials, Ch. 14, edited by N. S. Allen, Wiley & Sons, 2010Google Scholar
  38. 38.
    A. Bogaerts, Z. Chen, R. Gijbels, and A. Vertes, Spectrochim. Acta. B, 2003, 58: 1867ADSCrossRefGoogle Scholar
  39. 39.
    A. Bogaerts and Z. Chen, J. Anal. At. Spectrom., 2004, 19(9): 1169CrossRefGoogle Scholar
  40. 40.
    Z. Chen and A. Bogaerts, J. Appl. Phys., 2005, 97(6): 063305ADSCrossRefGoogle Scholar
  41. 41.
    A. Bogaerts, Z. Chen, and D. Bleiner, J. Anal. At. Spectrom., 2006, 21(4): 384CrossRefGoogle Scholar
  42. 42.
    L. J. Radziemski, and D. A. Cremers (Eds.), Laser-Induced Plasma and Applications, New York: Marcel Dekker Inc., 1989Google Scholar
  43. 43.
    L. Spitzer, Physics of Fully Ionized Gas, London: Interscience Publishers, 1956Google Scholar
  44. 44.
    L. Balazs, R. Gijbels, and A. Vertes, Anal. Chem., 1991, 63(4): 314CrossRefGoogle Scholar
  45. 45.
    J. A. M. Van Der Mullen, Spectrochim. Acta. B, 1990, 45(1–2): 1ADSCrossRefGoogle Scholar
  46. 46.
    J. F. Ready, Effect of High Power Laser Radiation, New York: Academic Press, 1971Google Scholar
  47. 47.
    L. I. Sedov, Similarity and Dimensional Methods in Mechanics, London: Academic Press, 1959MATHGoogle Scholar
  48. 48.
    N. Arnold, J. Gruber, and J. Heitz, Appl. Phys. A, 1999, 69: S87ADSGoogle Scholar
  49. 49.
    S. S. Mao, X. L. Mao, R. Greif, and R. E. Russo, Appl. Phys. Lett., 2000, 77(16): 2464ADSCrossRefGoogle Scholar
  50. 50.
    R. G. Root, Modeling of Post-Breakdown Phenomena in Laser-Induced Plasmas and Applications, Ch. 2, edited by L. J. Radziemski and D. A. Cremers, New York: Dekker, 1989Google Scholar
  51. 51.
    L. D. Landeau and E. M. Lifshitz, The Classical Theory of Fields, Addison-Wesley, 1962Google Scholar
  52. 52.
    J. Richter, Radiation of hot gases, in Plasma Diagnostics, Ch. 1, edited by W. Lochte-Holtgreven, Amsterdam: North-Holland Publishing Company, 1968Google Scholar
  53. 53.
    R. S. Devoto, Phys. Fluids, 1973, 16(5): 616ADSCrossRefGoogle Scholar
  54. 54.
    C. J. Knight, AIAA J., 1979, 17(5): 519ADSCrossRefGoogle Scholar
  55. 55.
    S. B. Wen, X. L. Mao, R. Greif, and R. E. Russo, J. Appl. Phys., 2006, 100(5): 053104ADSCrossRefGoogle Scholar
  56. 56.
    Ya. B. Zel’dovich and Yu. O. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, New York: Dover, 2002Google Scholar
  57. 57.
    D. I. Rosen, J. Mitteldorf, G. Kothandaraman, A. N. Pirri, and E. R. Pugh, J. Appl. Phys., 1982, 53(4): 3190ADSCrossRefGoogle Scholar
  58. 58.
    G. M. Weyl and D. I. Rosen, Phys. Rev. A, 1985, 31(4): 2300ADSCrossRefGoogle Scholar
  59. 59.
    D. H. Menzel and C. L. Pekeris, Mon. Not. R. Astron. Soc., 1935, 96: 77ADSMATHGoogle Scholar
  60. 60.
    L. M. Biberman and G. E. Norman, Opt. Spectrosc., 1960, 8: 230ADSGoogle Scholar
  61. 61.
    L. M. Biberman, G. E. Norman, and K. N. Ul’yanov, Opt. Spectrosc., 1961, 10: 297ADSGoogle Scholar
  62. 62.
    J. Hoffman, T. Moscicki, and Z. Szymanski, Appl. Phys. A, 2011, 104(3): 815ADSCrossRefGoogle Scholar
  63. 63.
    X. L. Mao, S. B. Wen, and R. E. Russo, Appl. Surf. Sci., 2007, 253(15): 6316ADSCrossRefGoogle Scholar
  64. 64.
    S. B. Wen, X. L. Mao, R. Greif, and R. E. Russo, J. Appl. Phys., 2007, 101(2): 023115ADSCrossRefGoogle Scholar
  65. 65.
    M. Boueri, M. Baudelet, J. Yu, X. L. Mao, S. S. Mao, and R. E. Russo, Appl. Surf. Sci., 2009, 255(24): 9566ADSCrossRefGoogle Scholar
  66. 66.
    Q. L. Ma, V. Motto-Ros, W. Q. Lei, M. Boueri, X. S. Bai, L. J. Zheng, H. P. Zeng, and J. Yu, Spectrochim. Acta. B, 2010, 65(11): 896ADSCrossRefGoogle Scholar
  67. 67.
    Q. L. Ma, V. Motto-Ros, F. Laye, J. Yu, W. Q. Lei, X. S. Bai, L. J. Zheng, and H. P. Zeng, J. Appl. Phys., 2012, 111(5): 053301ADSCrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Jin Yu (俞进)
    • 1
  • Qianli Ma (马千里)
    • 1
  • Vincent Motto-Ros
    • 1
  • Wenqi Lei (雷文奇)
    • 1
  • Xiaochun Wang (王晓纯)
    • 1
  • Xueshi Bai (白雪石)
    • 1
  1. 1.Université de LyonVilleurbanne, CNRS, UMR5579, LASIMFrance

Personalised recommendations