Advertisement

Frontiers of Physics

, Volume 7, Issue 2, pp 218–222 | Cite as

Heisenberg, uncertainty, and the scanning tunneling microscope

  • Werner A. Hofer
Perspective

Abstract

We show by a statistical analysis of high-resolution scanning tunneling microscopy (STM) experiments, that the interpretation of the density of electron charge as a statistical quantity leads to a conflict with the Heisenberg uncertainty principle. Given the precision in these experiments we find that the uncertainty principle would be violated by close to two orders of magnitude, if this interpretation were correct. We are thus forced to conclude that the density of electron charge is a physically real, i.e., in principle precisely measurable quantity.

Keywords

scanning tunneling microscope electron charge density functional theory uncertainty relations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and notes

  1. 1.
    G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel, Phys. Rev. Lett., 1982, 49(1): 57ADSCrossRefGoogle Scholar
  2. 2.
    G. Binnig and H. Rohrer, Rev. Mod. Phys., 1987, 59(3): 615ADSCrossRefGoogle Scholar
  3. 3.
    E. J. Heller, M. F. Crommie, C. P. Lutz, and D. M. Eigler, Nature, 1994, 394(6480): 464ADSCrossRefGoogle Scholar
  4. 4.
    H. Gawronski, M. Mehlhorn, and K. Morgenstern, Science, 2008, 319(5865): 930ADSCrossRefGoogle Scholar
  5. 5.
    N. Néel, J. Kröger, L. Limot, K. Palotas, W. A. Hofer, and R. Berndt, Phys. Rev. Lett., 2007, 98(1): 016801ADSCrossRefGoogle Scholar
  6. 6.
    K. R. Harikumar, T. Lim, I. R. McNab, J. C. Polanyi, L. Zotti, S. Ayissi, and W. A. Hofer, Nat. Nanotechnol., 2008, 3(4): 222CrossRefGoogle Scholar
  7. 7.
    W. A. Hofer, A. S. Foster, and A. L. Shluger, Rev. Mod. Phys., 2003, 75(4): 1287ADSCrossRefGoogle Scholar
  8. 8.
    Z. T. Deng, H. Lin, W. Ji, L. Gao, X. Lin, Z. H. Cheng, X. B. He, J. L. Lu, D. X. Shi, W. A. Hofer, and H. J. Gao, Phys. Rev. Lett., 2006, 96(15): 156102ADSCrossRefGoogle Scholar
  9. 9.
    J. Tersoff and D. R. Hamann, Phys. Rev. B, 1985, 31(2): 805ADSCrossRefGoogle Scholar
  10. 10.
    K. H. Rieder, G. Meyer, S.W. Hla, F. Moresco, K. F. Braun, K. Morgenstern, J. Repp, S. Foelsch, and L. Bartels, Philos. Trans. R. Soc. Lond. A, 2004, 362(1819): 1207ADSCrossRefGoogle Scholar
  11. 11.
    P. Hohenberg and W. Kohn, Phys. Rev., 1964, 136(3B): B864MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    W. Kohn and L. J. Sham, Phys. Rev., 1965, 140(4A): A1133MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    M. Born, Zeitschr. F. Phys., 1926, 37(12): 863ADSCrossRefGoogle Scholar
  14. 14.
    M. Born, Zeitschr. F. Phys., 1926, 38: 803ADSCrossRefGoogle Scholar
  15. 15.
    W. Heisenberg, Zeitschr. F. Phys., 1927, 43: 172ADSCrossRefGoogle Scholar
  16. 16.
    W. A. Hofer, Found. Phys., 2011, 41(4): 754MathSciNetADSzbMATHCrossRefGoogle Scholar
  17. 17.
    E. Schrödinger, Phys. Rev., 1926, 28(6): 1049ADSCrossRefGoogle Scholar
  18. 18.
    W. Heisenberg, Zeitschr. F. Phys., 1925, 33: 879ADSCrossRefGoogle Scholar
  19. 19.
    J. L. Park and H. Margenau, Int. J. Theor. Phys., 1968, 3(3): 211 See in particular page 213, “Many gedankenexperiments have been designed to illustrate Heisenberg’s famous law; unfortunately, the false impression is often conveyed that his principle, which is actually a theorem about standard deviations in collectives of measurement results, imposes restrictions on measur-ability.” italics in the original text.CrossRefGoogle Scholar
  20. 20.
    A. J. Heinrich, J. A. Gupta, C. P. Lutz, and D. M. Eigler, Science, 2004, 306(5695): 466ADSCrossRefGoogle Scholar
  21. 21.
    D. Bohm, Phys. Rev., 1952, 85(2): 166MathSciNetADSCrossRefGoogle Scholar
  22. 22.
    D. Bohm, Phys. Rev., 1952, 85(2): 180MathSciNetADSCrossRefGoogle Scholar
  23. 23.
    L. De Broglie, Non-linear Wave Mechanics: A Causal Interpretation, Amsterdam: Elsevier, 1960zbMATHGoogle Scholar
  24. 24.
    D. Hestenes, Found. Phys., 2010, 40(1): 1MathSciNetADSzbMATHCrossRefGoogle Scholar
  25. 25.
    J. C. Lian, Z. H. Cheng, Y. H. Jiang, Y. Y. Zhang, L. W. Liu, W. Ji, W. D. Xiao, S. X. Du, W. A. Hofer, and H. J. Gao, Phys. Rev. B, 2010, 81(19): 195411ADSCrossRefGoogle Scholar
  26. 26.
    A. Khrennikov, Europhys. Lett., 2009, 90(4): 40004ADSCrossRefGoogle Scholar
  27. 27.
    G. Gröessing, S. Fussy, J. Mesa Pascasio, and H. Schwabl, J. Phys.: Conf. Ser., 2011, 306: 012040ADSCrossRefGoogle Scholar
  28. 28.
    H. T. Elze, J. Phys.: Conf. Ser., 2009, 171: 012034ADSCrossRefGoogle Scholar
  29. 29.
    G. t’Hooft, J. Phys.: Conf. Ser., 2007, 67: U166Google Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of LiverpoolLiverpoolUK

Personalised recommendations