Frontiers of Physics

, Volume 6, Issue 4, pp 450–462 | Cite as

Nuclear magnetic resonance studies of vortices in high temperature superconductors

  • A. M. Mounce
  • S. Oh
  • W. P. Halperin
Review Article


The distinct distribution of local magnetic fields due to superconducting vortices can be detected with nuclear magnetic resonance (NMR) and used to investigate vortices and related physical properties of extreme type II superconductivity. This review summarizes work on high temperature superconductors (HTS) including cuprates and pnictide materials. Recent experimental results are presented which reveal the nature of vortex matter and novel electronic states. For example, the NMR spectrum has been found to provide a sharp indication of the vortex melting transition. In the vortex solid a frequency dependent spin-lattice relaxation has been reported in cuprates, including YBa2Cu3O7−x , Bi2SrCa2Cu2O8+δ , and Tl2Ba2CuO6+δ . These results have initiated a new spectroscopy via Doppler shifted nodal quasiparticles for the investigation of vortices. At very high magnetic fields this approach is a promising method for the study of vortex core excitations. These measurements have been used to quantify an induced spin density wave near the vortex cores in Bi2SrCa2Cu2O8+δ . Although the cuprates have a different superconducting order parameter than the iron arsenide superconductors there are, nonetheless, some striking similarities between them regarding vortex dynamics and frequency dependent relaxation.


nuclear magnetic resonance (NMR) superconductor vortex Doppler effect 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. G. Bednorz and K. A. Müller, Z. Physik B, 1986, 64: 189CrossRefADSGoogle Scholar
  2. 2.
    M. Lee, M. Yudkowsky, W. P. Halperin, J. Thiel, S. J. Hwu, and K. R. Poeppelmeier, Phys. Rev. B, 1987, 36(4): 2378CrossRefADSGoogle Scholar
  3. 3.
    M. Takigawa, P. C. Hammel, R. H. Heffner, Z. Fisk, K. C. Ott, and J. D. Thompson, Phys. Rev. Lett., 1989, 63(17): 1865CrossRefADSGoogle Scholar
  4. 4.
    M. Lee, Y. Q. Song, W. P. Halperin, L. M. Tonge, T. J. Marks, H. O. Marcy, and C. R. Kannewurf, Phys. Rev. B, 1989, 40(1): 817CrossRefADSGoogle Scholar
  5. 5.
    E. H. Brandt, Phys. Rev. Lett., 1991, 66(24): 3213CrossRefADSGoogle Scholar
  6. 6.
    V. F. Mitrović, Ph.D. thesis, Northwestern University, 2001Google Scholar
  7. 7.
    D. E. MacLaughlin, Solid State Physics, Academic Press, 1976: 1–69Google Scholar
  8. 8.
    V. F. Mitrović, E. E. Sigmund, M. Eschrig, H. N. Bachman, W. P. Halperin, A. P. Reyes, P. Kuhns, and W. G. Moulton, Nature, 2001, 413(6855): 501CrossRefADSGoogle Scholar
  9. 9.
    C. H. Pennington and C. P. Shlichter, Physical Properties of High Temperature Superconductors Vol. II, edited by D. M. Ginsberg, Singapore: World Scientific, 1990: 269–367CrossRefGoogle Scholar
  10. 10.
    K. Asayama, Y. Kitaoka, G. Q. Zheng, and K. Ishida, Progress in Nuclear Magnetic Resonance Spectroscopy, 1996, 28(3–4): 221CrossRefGoogle Scholar
  11. 11.
    C. Berthier, M. Julien, M. Horvatić, and Y. Berthier, J. Phys. I France, 1996, 6: 2205CrossRefGoogle Scholar
  12. 12.
    A. Rigamonti, F. Borsa, and P. Carrretta, Rep. Prog. Phys., 1998, 61(10): 1367CrossRefADSGoogle Scholar
  13. 13.
    R. E. Walstedt, The NMR Probe of High-·c Materials, Springer, 2008Google Scholar
  14. 14.
    N. J. Curro, Rep. Prog. Phys., 2009, 72(2): 026502CrossRefADSMathSciNetGoogle Scholar
  15. 15.
    A. A. Abrikosov, Sov. Phys. JEPT, 1957, 5: 1174Google Scholar
  16. 16.
    F. London, Superfluids, Vol. 1, New York: Wiley, 1950Google Scholar
  17. 17.
    V. Mitrović, E. Sigmund, and W. Halperin, Physica C, 2003, 388–389: 629CrossRefGoogle Scholar
  18. 18.
    G. Q. Zheng, H. Ozaki, Y. Kitaoka, P. Kuhns, A. P. Reyes, and W. G. Moulton, Phys. Rev. Lett., 2002, 88(7): 077003CrossRefADSGoogle Scholar
  19. 19.
    K. Kakuyanagi, K. Kumagai, Y. Matsuda, and M. Hasegawa, Phys. Rev. Lett., 2003, 90(19): 197003CrossRefADSGoogle Scholar
  20. 20.
    A. M. Mounce, S. Oh, S. Mukhopadhyay, W. P. Halperin, A. P. Reyes, P. L. Kuhns, K. Fujita, M. Ishikado, and S. Uchida, Phys. Rev. Lett., 2011, 106(5): 057003CrossRefADSGoogle Scholar
  21. 21.
    B. Chen, P. Sengupta, W. P. Halperin, E. E. Sigmund, V. F. Mitrović, M. H. Lee, K. H. Kang, B. J. Mean, J. Y. Kim, and B. K. Cho, New J. Phys., 2006, 8(11): 274CrossRefADSGoogle Scholar
  22. 22.
    Y. Q. Song, Physica C, 1995, 241(1–2): 187CrossRefADSGoogle Scholar
  23. 23.
    G. Koutroulakis, V. F. Mitrović, M. Horvatić, C. Berthier, G. Lapertot, and J. Flouquet, Phys. Rev. Lett., 2008, 101(4): 047004CrossRefADSGoogle Scholar
  24. 24.
    G. Blatter, M. V. Feigel’man, V. B. Geshkenbein, A. I. Larkin, and V. M. Vinokur, Rev. Mod. Phys., 1994, 66(4): 1125CrossRefADSGoogle Scholar
  25. 25.
    W. K. Kwok, S. Fleshler, U. Welp, V. M. Vinokur, J. Downey, G. W. Crabtree, and M. M. Miller, Phys. Rev. Lett., 1992, 69(23): 3370CrossRefADSGoogle Scholar
  26. 26.
    D. T. Fuchs, E. Zeldov, T. Tamegai, S. Ooi, M. Rappaport, and H. Shtrikman, Phys. Rev. Lett., 1998, 80(22): 4971CrossRefADSGoogle Scholar
  27. 27.
    B. Chen, W. Halperin, P. Guptasarma, D. Hinks, V. F. Mitrović, A. Reyes, and P. Kuhns, Nat. Phys., 2007, 3(4): 239CrossRefGoogle Scholar
  28. 28.
    H. N. Bachman, A. P. Reyes, V. F. Mitrović, W. P. Halperin, A. Kleinhammes, P. Kuhns, and W. G. Moulton, Phys. Rev. Lett., 1998, 80(8): 1726CrossRefADSGoogle Scholar
  29. 29.
    S. Oh, A. M. Mounce, S. Mukhopadhyay, W. P. Halperin, A. B. Vorontsov, S. L. Bud’ko, P. C. Canfield, Y. Furukawa, A. P. Reyes, and P. L. Kuhns, Phys. Rev. B, 2011, 83(21): 214501CrossRefADSGoogle Scholar
  30. 30.
    A. P. Reyes, X. P. Tang, H. N. Bachman, W. P. Halperin, J. A. Martindale, and P. C. Hammel, Phys. Rev. B, 1997, 55(22): R14737CrossRefADSGoogle Scholar
  31. 31.
    L. I. Glazman and A. E. Koshelev, Phys. Rev. B, 1991, 43(4): 2835CrossRefADSGoogle Scholar
  32. 32.
    S. K. Yip and J. A. Sauls, Phys. Rev. Lett., 1992, 69(15): 2264CrossRefADSGoogle Scholar
  33. 33.
    G. E. Volovik, Pis’ma Zh. Eksp. Teor. Fiz., 1993, 58: 457Google Scholar
  34. 34.
    K. A. Moler, D. J. Baar, J. S. Urbach, R. Liang, W. N. Hardy, and A. Kapitulnik, Phys. Rev. Lett., 1994, 73(20): 2744CrossRefADSGoogle Scholar
  35. 35.
    K. A. Moler, D. L. Sisson, J. S. Urbach, M. R. Beasley, A. Kapitulnik, D. J. Baar, R. Liang, and W. N. Hardy, Phys. Rev. B, 1997, 55(6): 3954CrossRefADSGoogle Scholar
  36. 36.
    H. Aubin, K. Behnia, S. Ooi, and T. Tamegai, Phys. Rev. Lett., 1999, 82(3): 624CrossRefADSGoogle Scholar
  37. 37.
    M. Chiao, R. W. Hill, C. Lupien, L. Taillefer, P. Lambert, R. Gagnon, and P. Fournier, Phys. Rev. B, 2000, 62(5): 3554CrossRefADSGoogle Scholar
  38. 38.
    M. Takigawa, M. Ichioka, and K. Machida, Phys. Rev. Lett., 1999, 83(15): 3057CrossRefADSGoogle Scholar
  39. 39.
    N. J. Curro, C. Milling, J. Haase, and C. P. Slichter, Phys. Rev. B, 2000, 62(5): 3473CrossRefADSGoogle Scholar
  40. 40.
    J. Haase, N. J. Curro, R. Stern, and C. P. Slichter, Phys. Rev. Lett., 1998, 81(7): 1489CrossRefADSGoogle Scholar
  41. 41.
    R. Wortis, A. J. Berlinsky, and C. Kallin, Phys. Rev. B, 2000, 61(18): 12342CrossRefADSGoogle Scholar
  42. 42.
    K. Kakuyanagi, J. Phys. Chem. Solids, 2002, 63: 2305CrossRefADSGoogle Scholar
  43. 43.
    V. F. Mitrović, E. E. Sigmund, W. P. Halperin, A. P. Reyes, P. Kuhns, and W. G. Moulton, Phys. Rev. B, 2003, 67(22): 220503CrossRefADSGoogle Scholar
  44. 44.
    S. Oh, A. M. Mounce, S. Mukhopadhyay, W. P. Halperin, A. B. Vorontsov, S. L. Bud’ko, P. C. Canfield, Y. Furukawa, A. P. Reyes, and P. L. Kuhns, arXiv:1109.3834v2, 2011Google Scholar
  45. 45.
    D. K. Morr, Phys. Rev. B, 2001, 63(21): 214509CrossRefADSGoogle Scholar
  46. 46.
    D. Knapp, C. Kallin, A. J. Berlinsky, and R. Wortis, Phys. Rev. B, 2002, 66(14): 144508CrossRefADSGoogle Scholar
  47. 47.
    R. E. Throckmorton and O. Vafek, Phys. Rev. B, 2010, 81(10): 104515CrossRefADSGoogle Scholar
  48. 48.
    C. H. Recchia, J. A. Martindale, C. H. Pennington, W. L. Hults, and J. L. Smith, Phys. Rev. Lett., 1997, 78(18): 3543CrossRefADSGoogle Scholar
  49. 49.
    T. Lu and R. Wortis, Phys. Rev. B, 2006, 74(13): 134516CrossRefADSGoogle Scholar
  50. 50.
    R. E. Walstedt and S. W. Cheong, Phys. Rev. B, 1995, 51(5): 3163CrossRefADSGoogle Scholar
  51. 51.
    J. E. Hoffman, E. W. Hudson, K. M. Lang, V. Madhavan, H. Eisaki, S. Uchida, and J. C. Davis, Science, 2002, 295(5554): 466CrossRefADSGoogle Scholar
  52. 52.
    T. Hanaguri, C. Lupien, Y. Kohsaka, D. H. Lee, M. Azuma, M. Takano, H. Takagi, and J. C. Davis, Nature, 2004, 430(7003): 1001CrossRefADSGoogle Scholar
  53. 53.
    W. D. Wise, M. C. Boyer, K. Chatterjee, T. Kondo, T. Takeuchi, H. Ikuta, Y. Wang, and E. W. Hudson, Nat. Phys., 2008, 4(9): 696CrossRefGoogle Scholar
  54. 54.
    B. Lake, G. Aeppli, K. N. Clausen, D. F. McMorrow, K. Lefmann, N. E. Hussey, N. Mangkorntong, M. Nohara, H. Takagi, T. E. Mason, and A. Schröder, Science, 2001, 291(5509): 1759CrossRefADSGoogle Scholar
  55. 55.
    B. Lake, H. Ronnow, N. Christensen, G. Aeppli, K. Lefmann, D. F. McMorrow, P. Vorderwisch, P. Smeibidl, N. Mangkorntong, T. Sasagawa, M. Nohara, H. Takagi, and T. E. Mason, Nature, 2002, 415(6869): 299CrossRefADSGoogle Scholar
  56. 56.
    B. Khaykovich, Y. S. Lee, R. W. Erwin, S. H. Lee, S. Wakimoto, K. J. Thomas, M. A. Kastner, and R. J. Birgeneau, Phys. Rev. B, 2002, 66(1): 014528CrossRefADSGoogle Scholar
  57. 57.
    S. Sachdev, Rev. Mod. Phys., 2003, 75(3): 913CrossRefADSMathSciNetGoogle Scholar
  58. 58.
    C. Caroli, P. D. Gennes, and J. Matricon, Phys. Lett., 1964, 9(4): 307CrossRefzbMATHADSGoogle Scholar
  59. 59.
    J. D. Shore, M. Huang, A. T. Dorsey, and J. P. Sethna, Phys. Rev. Lett., 1989, 62(26): 3089CrossRefADSGoogle Scholar
  60. 60.
    Y. Nakai, Y. Hayashi, K. Ishida, H. Sugawara, D. Kikuchi, and H. Sato, Physica B, 2008, 403(5–9): 1109CrossRefADSGoogle Scholar
  61. 61.
    Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, J. Am. Chem. Soc., 2008, 130(11): 3296CrossRefGoogle Scholar
  62. 62.
    I. I. Mazin, D. J. Singh, M. D. Johannes, and M. H. Du, Phys. Rev. Lett., 2008, 101(5): 057003CrossRefADSGoogle Scholar
  63. 63.
    Y. Bang, Phys. Rev. Lett., 2010, 104(21): 217001CrossRefADSGoogle Scholar
  64. 64.
    Y. Bang, arXiv:1112.0142, 2011Google Scholar
  65. 65.
    G. E. Volovik, J. Phys. C, 1988, 21: L221CrossRefADSGoogle Scholar
  66. 66.
    B. G. Silbernagel, M. Weger, and J. E. Wernick, Phys. Rev. Lett., 1966, 17(7): 384CrossRefADSGoogle Scholar
  67. 67.
    B. G. Silbernagel, M. Weger, W. G. Clark, and J. H. Wernick, Phys. Rev., 1967, 153(2): 535CrossRefADSGoogle Scholar
  68. 68.
    A. Z. Genack and A. G. Redfield, Phys. Rev. Lett., 1973, 31(19): 1204CrossRefADSGoogle Scholar
  69. 69.
    A. Z. Genack and A. G. Redfield, Phys. Rev. B, 1975, 12(1): 78CrossRefADSGoogle Scholar
  70. 70.
    R. Wortis, Ph.D. thesis, University of Illinois Champaign Urbana, 1998Google Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Department of Physics and AstronomyNorthwestern UniversityEvanstonUSA

Personalised recommendations