Frontiers of Physics

, Volume 7, Issue 1, pp 8–15 | Cite as

Polaron, molecule and pairing in one-dimensional spin-1/2 Fermi gas with an attractive Delta-function interaction

Research Article

Abstract

Using solutions of the discrete Bethe ansatz equations, we study in detail the quantum impurity problem of a spin-down fermion immersed into a fully ploarized spin-up Fermi sea with weak attraction. We prove that this impurity fermion in the one-dimensional (1D) fermionic medium behaves like a polaron for weak attraction. However, as the attraction grows, the spin-down fermion binds with one spin-up fermion from the fully-polarized medium to form a tightly bound molecule. Thus it is seen that the system undergos a crossover from a mean field polaron-like nature into a mixture of excess fermions and a bosonic molecule as the attraction changes from weak attraction into strong attraction. This polaron-molecule crossover is universal in 1D many-body systems of interacting fermions. In a thermodynamic limit, we further study the relationship between the Fredholm equations for the 1D spin-1/2 Fermi gas with weakly repulsive and attractive delta-function interactions.

Keywords

spin-1/2 Fermi gas polaron molecule Fredholm equations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. N. Yang, Phys. Rev. Lett., 1967, 19(23): 1312MathSciNetADSMATHCrossRefGoogle Scholar
  2. 2.
    M. Gaudin, Phys. Lett. A, 1967, 24(1): 55MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    P. Fulde and R. A. Ferrell, Phys. Rev., 1964, 135(3A): A550ADSCrossRefGoogle Scholar
  4. 4.
    A. I. Larkin and Yu. N. Ovchinnikov, Sov. Phys. JETP, 1965, 20: 762MathSciNetGoogle Scholar
  5. 5.
    K. Yang, Phys. Rev. B, 2001, 63(14): 140511(R)ADSCrossRefGoogle Scholar
  6. 6.
    A. E. Feiguin and F. Heidrich-Meisner, Phys. Rev. B, 2007, 76(22): 220508(R)ADSCrossRefGoogle Scholar
  7. 7.
    M. Tezuka and M. Ueda, Phys. Rev. Lett., 2008, 100(11): 110403ADSCrossRefGoogle Scholar
  8. 8.
    E. Zhao and W. V. Liu, Phys. Rev. A, 2008, 78(6): 063605ADSCrossRefGoogle Scholar
  9. 9.
    E. Zhao, X.-W. Guan, W. V. Liu, M. T. Batchelor, and M. Oshikawa, Phys. Rev. Lett., 2009, 103(14): 140404ADSCrossRefGoogle Scholar
  10. 10.
    X.-W. Guan and T.-L. Ho, Phys. Rev. A, 2011, 84(2): 023616ADSCrossRefGoogle Scholar
  11. 11.
    X.-G. Yin, X.-W. Guan, S. Chen, and M. T. Bachelor, Phys. Rev. A, 2011, 84(1): 011602 (R)ADSCrossRefGoogle Scholar
  12. 12.
    G. Orso, Phys. Rev. Lett., 2007, 98(7): 070402ADSCrossRefGoogle Scholar
  13. 13.
    H. Hu, X.-J. Liu, and P. D. Drummond, Phys. Rev. Lett., 2007, 98(7): 070403ADSCrossRefGoogle Scholar
  14. 14.
    X. W. Guan, M. T. Batchelor, C. Lee, and M. Bortz, Phys. Rev. B, 2007, 76(8): 085120ADSCrossRefGoogle Scholar
  15. 15.
    M. Casula, D. M. Ceperley, and E. J. Mueller, Phys. Rev. A, 2008, 78(3): 033607ADSCrossRefGoogle Scholar
  16. 16.
    T. Iida and M. Wadati, J. Phys. Soc. Jpn., 2008, 77(2): 024006ADSCrossRefGoogle Scholar
  17. 17.
    Yean-an Liao, A. S. C. Rittner, T. Paprotta, Wenhui Li, G. B. Partridge, R. G. Hulet, S. K. Baur, and E. J. Mueller, Nature, 2010, 467(7315): 567ADSCrossRefGoogle Scholar
  18. 18.
    A. Schirotzek, Cheng-Hsun Wu, A. Sommer, and M. W. Zwierlein, Phys. Rev. Lett., 2009, 102(23): 230402ADSCrossRefGoogle Scholar
  19. 19.
    S. Nascimb`ene, N. Navon, K. J. Jiang, L. Tarruell, M. Teichmann, J. McKeever, F. Chevy, and C. Salomon, Phys. Rev. Lett., 2009, 103(17): 170402ADSCrossRefGoogle Scholar
  20. 20.
    R. Combescot and S. Giraud, Phys. Rev. Lett., 2008, 101(5): 050404ADSCrossRefGoogle Scholar
  21. 21.
    G. M. Bruum and P. Massignan, Phys. Rev. Lett., 2010, 105(2): 020403ADSCrossRefGoogle Scholar
  22. 22.
    C. J. M. Mathy, M. M. Parish, and D. A. Huse, Phys. Rev. Lett., 2011, 106(16): 166404ADSCrossRefGoogle Scholar
  23. 23.
    M. M. Parish, Phys. Rev. A, 2011, 83(5): 051603(R)ADSCrossRefGoogle Scholar
  24. 24.
    M. J. Leskin, O. H. T. Nummi, F. Massel, and Pörmä, New. J. Phys., 2010, 12: 073044ADSCrossRefGoogle Scholar
  25. 25.
    X.-W. Guan, in preparationGoogle Scholar
  26. 26.
    M. Olshanii, Phys. Rev. Lett., 1998, 81(5): 938ADSCrossRefGoogle Scholar
  27. 27.
    Liming Guan, Shu Chen, Yupeng Wang, and Zhong-Qi Ma, Phys. Rev. Lett., 2009, 102(16): 160402ADSCrossRefGoogle Scholar
  28. 28.
    C. N. Yang, Lectures given at the Karpacz Winter School of Physics, February 1970, see: Selected papers 1945–1980 with commentary, W. H. Freeman and Company, 1983: 430Google Scholar
  29. 29.
    M. Takahashi, Prog. Theor. Phys., 1970, 44(4): 899ADSCrossRefGoogle Scholar
  30. 30.
    J. B. McGuire, J. Math. Phys., 1965, 6(3): 432MathSciNetADSMATHCrossRefGoogle Scholar
  31. 31.
    J. B. McGuire, J. Math. Phys., 1966, 7(1): 123MathSciNetADSCrossRefGoogle Scholar
  32. 32.
    S. Giraud and R. Combescot, Phys. Rev. A, 2009, 79(4): 043615ADSCrossRefGoogle Scholar
  33. 33.
    M. T. Batchelor, M. Bortz, X. W. Guan, and N. Oelkers, J. Phys.: Conf. Ser., 2006, 42: 5ADSCrossRefGoogle Scholar
  34. 34.
    J.-Y. Lee and X.-W. Guan, Nucl. Phys. B, 2011, 853(1): 125ADSMATHCrossRefGoogle Scholar
  35. 35.
    C. N. Yang, Int. J. Mod. Phys. B, 1988, 2(6): 1325ADSCrossRefGoogle Scholar
  36. 36.
    M. Takahashi, Prog. Theor. Phys., 1970, 44: 11Google Scholar
  37. 37.
    X.-W. Guan and Z.-Q. Ma, arXiv:1110.2821, 2011Google Scholar
  38. 38.
    J. Catani, G. Lamporesi, D. Naik, M. Gring, M. Inguscio, and F. Minardi, arXiv:1106.0828, 2011Google Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Theoretical Physics, Research School of Physics and EngineeringAustralian National UniversityCanberraAustralia

Personalised recommendations