Frontiers of Physics

, Volume 7, Issue 1, pp 54–71 | Cite as

Theory of superfluidity and drag force in the one-dimensional Bose gas

  • Alexander Yu. Cherny
  • Jean-Sébastien Caux
  • Joachim Brand
Review Article

Abstract

The one-dimensional Bose gas is an unusual superfluid. In contrast to higher spatial dimensions, the existence of non-classical rotational inertia is not directly linked to the dissipationless motion of infinitesimal impurities. Recently, experimental tests with ultracold atoms have begun and quantitative predictions for the drag force experienced by moving obstacles have become available. This topical review discusses the drag force obtained from linear response theory in relation to Landau’s criterion of superfluidity. Based upon improved analytical and numerical understanding of the dynamical structure factor, results for different obstacle potentials are obtained, including single impurities, optical lattices and random potentials generated from speckle patterns. The dynamical breakdown of superfluidity in random potentials is discussed in relation to Anderson localization and the predicted superfluid-insulator transition in these systems.

Keywords

Lieb-Liniger model Tonks-Girardeau gas Luttinger liquid drag force superfluidity dynamical structure factor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and notes

  1. 1.
    A. J. Leggett, Rev. Mod. Phys., 1999, 71(2): S318MathSciNetCrossRefGoogle Scholar
  2. 2.
    A. J. Leggett, Rev. Mod. Phys., 2001, 73(2): 307ADSCrossRefGoogle Scholar
  3. 3.
    É. B. Sonin, Sov. Phys. Usp., 1982, 25: 409ADSCrossRefGoogle Scholar
  4. 4.
    P. Nozières and D. Pines, The Theory of Quantum Liquids: Superfluid Bose Liquids, Redwood City: Addison-Wesley, 1990Google Scholar
  5. 5.
    L. Pitaevskii and S. Stringari, Bose-Einstein Condensation, Oxford: Clarendon, 2003MATHGoogle Scholar
  6. 6.
    A. J. Leggett, Quantum Liquids: Bose Condensation and Cooper Pairing in Condensed-Matter Systems, Oxford: Oxford University Press, 2006Google Scholar
  7. 7.
    N. N. Bogoliubov, Quasi-Expectation Values in Problems of Statistical Machanics, New York: Gordon and Breach, 1961Google Scholar
  8. 8.
    P. C. Hohenberg, Phys. Rev., 1967, 158(2): 383ADSCrossRefGoogle Scholar
  9. 9.
    G. B. Hess and W. M. Fairbank, Phys. Rev. Lett., 1967, 19: 216ADSCrossRefGoogle Scholar
  10. 10.
    A. J. Leggett, Phys. Fenn., 1973, 8: 125Google Scholar
  11. 11.
    A. G. Sykes, M. J. Davis, and D. C. Roberts, Phys. Rev. Lett., 2009, 103(8): 085302ADSCrossRefGoogle Scholar
  12. 12.
    S. Gupta, K. W. Murch, K. L. Moore, T. P. Purdy, and D. M. Stamper-Kurn, Phys. Rev. Lett., 2005, 95(14): 143201ADSCrossRefGoogle Scholar
  13. 13.
    C. Ryu, M. F. Andersen, P. Cladé, V. Natarajan, K. Helmerson, and W. D. Phillips, Phys. Rev. Lett., 2007, 99(26): 260401ADSCrossRefGoogle Scholar
  14. 14.
    S. E. Olson, M. L. Terraciano, M. Bashkansky, and F. K. Fatemi, Phys. Rev. A, 2007, 76(6): 061404ADSCrossRefGoogle Scholar
  15. 15.
    S. Palzer, C. Zipkes, C. Sias, and M. Köhl, Phys. Rev. Lett., 2009, 103(15): 150601ADSCrossRefGoogle Scholar
  16. 16.
    J. Catani, G. Lamporesi, D. Naik, M. Gring, M. Inguscio, F. Minardi, A. Kantian, and T. Giamarchi, arXiv:1106.0828, 2011Google Scholar
  17. 17.
    L. Fallani, L. De Sarlo, J. E. Lye, M. Modugno, R. Saers, C. Fort, and M. Inguscio, Phys. Rev. Lett., 2004, 93(14): 140406ADSCrossRefGoogle Scholar
  18. 18.
    C. D. Fertig, K. M. O’Hara, J. H. Huckans, S. L. Rolston, W. D. Phillips, and J. V. Porto, Phys. Rev. Lett., 2005, 94(12): 120403ADSCrossRefGoogle Scholar
  19. 19.
    J. Mun, P. Medley, G. K. Campbell, L. G. Marcassa, D. E. Pritchard, and W. Ketterle, Phys. Rev. Lett., 2007, 99(15): 150604ADSCrossRefGoogle Scholar
  20. 20.
    J. Billy, V. Josse, Z. Zuo, A. Bernard, B. Hambrecht, P. Lugan, D. Clément, L. Sanchez-Palencia, P. Bouyer, and A. Aspect, Nature, 2008, 453(7197): 891ADSCrossRefGoogle Scholar
  21. 21.
    G. Roati, C. D’Errico, L. Fallani, M. Fattori, C. Fort, M. Zaccanti, G. Modugno, M. Modugno, and M. Inguscio, Nature, 2008, 453(7197): 895ADSCrossRefGoogle Scholar
  22. 22.
    B. Deissler, M. Zaccanti, G. Roati, C. D’Errico, M. Fattori, M. Modugno, G. Modugno, and M. Inguscio, Nat. Phys., 2010, 6(5): 354CrossRefGoogle Scholar
  23. 23.
    V. A. Kashurnikov, A. I. Podlivaev, N. V. Prokof’ev, and B. V. Svistunov, Phys. Rev. B, 1996, 53(19): 13091ADSCrossRefGoogle Scholar
  24. 24.
    E. H. Lieb and W. Liniger, Phys. Rev., 1963, 130(4): 1605MathSciNetADSMATHCrossRefGoogle Scholar
  25. 25.
    L. Tonks, Phys. Rev., 1936, 50(10): 955ADSMATHCrossRefGoogle Scholar
  26. 26.
    M. Girardeau, J. Math. Phys., 1960, 1(6): 516MathSciNetADSMATHCrossRefGoogle Scholar
  27. 27.
    M. A. Cazalilla, R. Citro, T. Giamarchi, E. Orignac, and M. Rigol, arXiv:1101.5337, 2011, to appear in Rev. Mod. Phys.Google Scholar
  28. 28.
    In this paper we use the linear momentum and coordinates and velocities. The angular momentum and angle and angular velocity can easily be written as L z = pL/(2π), φ = 2πx/L, ω z = 2πν/L, respectively.Google Scholar
  29. 29.
    E. H. Lieb, Phys. Rev., 1963, 130(4): 1616MathSciNetADSMATHCrossRefGoogle Scholar
  30. 30.
    F. D. M. Haldane, Phys. Rev. Lett., 1981, 47: 1840, note a misprint in Eq. (7) for the density-density correlator: the sign before the second therm should be minus.ADSCrossRefGoogle Scholar
  31. 31.
    C. Raman, M. Köhl, R. Onofrio, D. S. Durfee, C. E. Kuklewicz, Z. Hadzibabic, and W. Ketterle, Phys. Rev. Lett., 1999, 83(13): 2502ADSCrossRefGoogle Scholar
  32. 32.
    A. Y. Cherny, J. S. Caux, and J. Brand, Phys. Rev. A, 2009, 80(4): 043604ADSCrossRefGoogle Scholar
  33. 33.
    M. Ueda and A. J. Leggett, Phys. Rev. Lett., 1999, 83(8): 1489ADSCrossRefGoogle Scholar
  34. 34.
    M. A. Cazalilla, J. Phys. B, 2004, 37(7): S1ADSCrossRefGoogle Scholar
  35. 35.
    H. P. Büchler, V. B. Geshkenbein, and G. Blatter, Phys. Rev. Lett., 2001, 87(10): 100403CrossRefGoogle Scholar
  36. 36.
    R. Citro, A. Minguzzi, and F. W. J. Hekking, Phys. Rev. B, 2009, 79(17): 172505ADSCrossRefGoogle Scholar
  37. 37.
    T. Cheon and T. Shigehara, Phys. Rev. Lett., 1999, 82(12): 2536ADSCrossRefGoogle Scholar
  38. 38.
    A. Y. Cherny, J. S. Caux, J. Brand, and J. Sib, Fed. Univ. Math. Phys., 2010, 3: 289Google Scholar
  39. 39.
    G. E. Astrakharchik and L. P. Pitaevskii, Phys. Rev. A, 2004, 70: 013608, note misprints in Eq. (20) for the drag force in this paper.ADSCrossRefGoogle Scholar
  40. 40.
    P. C. Hohenberg and P. M. Platzman, Phys. Rev., 1966, 152(1): 198ADSCrossRefGoogle Scholar
  41. 41.
    J. Brand and A. Y. Cherny, Phys. Rev. A, 2005, 72(3): 033619ADSCrossRefGoogle Scholar
  42. 42.
    A. Y. Cherny and J. Brand, Phys. Rev. A, 2006, 73(2): 023612ADSCrossRefGoogle Scholar
  43. 43.
    N. N. Bogoliubov, J. Phys. USSR, 1947, 11: 23, reprinted in Ref. [49]Google Scholar
  44. 44.
    N. N. Bogoliubov, Lectures on Quantum Statistics, Vol. 2, New York: Gordon and Breach, 1970Google Scholar
  45. 45.
    A. Y. Cherny and J. Brand, Phys. Rev. A, 2009, 79(4): 043607ADSCrossRefGoogle Scholar
  46. 46.
    D. L. Kovrizhin and L. A. Maksimov, Phys. Lett. A, 2001, 282(6): 421ADSCrossRefGoogle Scholar
  47. 47.
    M. D. Girardeau and M. Olshanii, Phys. Rev. A, 2004, 70(2): 023608ADSCrossRefGoogle Scholar
  48. 48.
    B. E. Granger and D. Blume, Phys. Rev. Lett., 2004, 92(13): 133202ADSCrossRefGoogle Scholar
  49. 49.
    D. Pines (Ed.), The Many-Body Problem, New York: W. A. Benjamin, 1990Google Scholar
  50. 50.
    M. Gattobigio, J. Phys. B, 2006, 39(10): S191ADSCrossRefGoogle Scholar
  51. 51.
    V. N. Popov, Theor. Math. Phys., 1972, 11: 565CrossRefGoogle Scholar
  52. 52.
    V. N. Popov, Functional Integrals in Quantum Field Theory and Statistical Physics, Dordrecht: Reidel, 1983MATHCrossRefGoogle Scholar
  53. 53.
    V. E. Korepin, N. M. Bogoliubov, and A. G. Izergin, Quantum Inverse Scattering Method and Correlation Functions, Cambridge: Cambridge University Press, 1993, see Section XVIII.2MATHCrossRefGoogle Scholar
  54. 54.
    A. D. Mironov and A. V. Zabrodin, Phys. Rev. Lett., 1991, 66(5): 534ADSCrossRefGoogle Scholar
  55. 55.
    A. O. Gogolin, A. A. Nersesyan, and A. M. Tsvelik, Bozonization and Strongly Correlated Systems, Cambridge: Cambridge University Press, 1998Google Scholar
  56. 56.
    G. E. Astrakharchik, Quantum Monte Carlo Study of Ultracold Gases, Ph.D. thesis, Universit’a degli Studi di Trento, 2004, Section 1.7.4Google Scholar
  57. 57.
    N. Kitanine, K. K. Kozlowski, J. M. Maillet, N. A. Slavnov, and V. Terras, J. Stat. Mech.: Th. Exp., 2009, 2009: P04003MathSciNetCrossRefGoogle Scholar
  58. 58.
    A. Shashi, L. I. Glazman, J. S. Caux, and A. Imambekov, arXiv:1010.2268, 2010Google Scholar
  59. 59.
    A. Shashi, L. I. Glazman, J. S. Caux, and A. Imambekov, Phys. Rev. B, 2011, 84(4): 045408ADSCrossRefGoogle Scholar
  60. 60.
    J. S. Caux and P. Calabrese, Phys. Rev. A, 2006, 74(3): 031605ADSCrossRefGoogle Scholar
  61. 61.
    J. S. Caux, J. Math. Phys., 2009, 50(9): 095214MathSciNetADSCrossRefGoogle Scholar
  62. 62.
    M. Gaudin, La fonction d’onde de Bethe., Collection du Commissariat a l’Energie Atomique. Serie Scientifique. Paris etc.: Masson. XVI, p330, 1983Google Scholar
  63. 63.
    V. E. Korepin, Commun. Math. Phys., 1982, 86(3): 391MathSciNetADSMATHCrossRefGoogle Scholar
  64. 64.
    N. A. Slavnov, Teor. Mat. Fiz., 1989, 79: 232MathSciNetGoogle Scholar
  65. 65.
    N. A. Slavnov, Teor. Mat. Fiz., 1990, 82: 273MathSciNetGoogle Scholar
  66. 66.
    A. Y. Cherny and J. Brand, J. Phys.: Conf. Ser., 2008, 129: 012051ADSCrossRefGoogle Scholar
  67. 67.
    A. Imambekov and L. I. Glazman, Phys. Rev. Lett., 2008, 100(20): 206805ADSCrossRefGoogle Scholar
  68. 68.
    Note that the field theory predictions of [67] actually include a singularity also forω > ω+(k), with a universal shoulder ratio. We neglect this here since it gives only a small correction to the results.Google Scholar
  69. 69.
    We slightly change the notations: our ω ± and ±µ± correspond to ω 1,2 and µ1,2 in Ref. [67], respectively. We also denote the density of particles n and the Fermi wavevector for quasiparticles q 0 instead of D and q used in Refs. [53, 67], respectively.Google Scholar
  70. 70.
    V. N. Golovach, A. Minguzzi, and L. I. Glazman, Phys. Rev. A, 2009, 80(4): 043611ADSCrossRefGoogle Scholar
  71. 71.
    Y. Kagan, N. V. Prokof’ev, and B. V. Svistunov, Phys. Rev. A, 2000, 61(4): 045601ADSCrossRefGoogle Scholar
  72. 72.
    J. M. Ziman, Principles of the Theory of Solids, Cambridge: Cambridge University Press, 1972Google Scholar
  73. 73.
    A. Trombettoni and A. Smerzi, Phys. Rev. Lett., 2001, 86(11): 2353ADSCrossRefGoogle Scholar
  74. 74.
    E. Altman, A. Polkovnikov, E. Demler, B. I. Halperin, and M. D. Lukin, Phys. Rev. Lett., 2005, 95(2): 020402ADSCrossRefGoogle Scholar
  75. 75.
    A. Polkovnikov, E. Altman, E. Demler, B. Halperin, and M. D. Lukin, Phys. Rev. A, 2005, 71(6): 063613ADSCrossRefGoogle Scholar
  76. 76.
    J. Ruostekoski and L. Isella, Phys. Rev. Lett., 2005, 95(11): 110403ADSCrossRefGoogle Scholar
  77. 77.
    A. R. Kolovsky, New J. Phys., 2006, 8(9): 197ADSCrossRefGoogle Scholar
  78. 78.
    I. Danshita and C. W. Clark, Phys. Rev. Lett., 2009, 102(3): 030407ADSCrossRefGoogle Scholar
  79. 79.
    P. W. Anderson, Phys. Rev., 1958, 109(5): 1492ADSCrossRefGoogle Scholar
  80. 80.
    L. Sanchez-Palencia and M. Lewenstein, Nat. Phys., 2010, 6(2): 87CrossRefGoogle Scholar
  81. 81.
    G. Modugno, Rep. Prog. Phys., 2010, 73(10): 102401ADSCrossRefGoogle Scholar
  82. 82.
    L. Sanchez-Palencia, Phys. Rev. A, 2006, 74(5): 053625ADSCrossRefGoogle Scholar
  83. 83.
    L. Sanchez-Palencia, D. Clément, P. Lugan, P. Bouyer, G. V. Shlyapnikov, and A. Aspect, Phys. Rev. Lett., 2007, 98(21): 210401ADSCrossRefGoogle Scholar
  84. 84.
    P. Lugan, D. Clément, P. Bouyer, A. Aspect, M. Lewenstein, and L. Sanchez-Palencia, Phys. Rev. Lett., 2007, 98(17): 170403ADSCrossRefGoogle Scholar
  85. 85.
    P. Lugan, D. Clément, P. Bouyer, A. Aspect, and L. Sanchez-Palencia, Phys. Rev. Lett., 2007, 99(18): 180402ADSCrossRefGoogle Scholar
  86. 86.
    T. Paul, P. Schlagheck, P. Leboeuf, and N. Pavloff, Phys. Rev. Lett., 2007, 98(21): 210602ADSCrossRefGoogle Scholar
  87. 87.
    A. S. Pikovsky and D. L. Shepelyansky, Phys. Rev. Lett., 2008, 100(9): 094101ADSCrossRefGoogle Scholar
  88. 88.
    G. Kopidakis, S. Komineas, S. Flach, and S. Aubry, Phys. Rev. Lett., 2008, 100(8): 084103ADSCrossRefGoogle Scholar
  89. 89.
    G. M. Falco, T. Nattermann, and V. L. Pokrovsky, Phys. Rev. B, 2009, 80(10): 104515ADSCrossRefGoogle Scholar
  90. 90.
    I. L. Aleiner, B. L. Altshuler, and G. V. Shlyapnikov, Nat. Phys., 2010, 6(11): 900CrossRefGoogle Scholar
  91. 91.
    J. Radić, V. Bačić, D. Jukić, M. Segev, and H. Buljan, Phys. Rev. A, 2010, 81(6): 063639ADSCrossRefGoogle Scholar
  92. 92.
    J. W. Goodman, Statistical Properties of Laser Speckle Patterns, in: Laser Speckle and Related Phenomena, edited by J.-C. Dainty, Berlin: Springer-Verlag, 1975, pp 9–75CrossRefGoogle Scholar
  93. 93.
    D. Clément, A. F. Varón, J. A. Retter, L. Sanchez-Palencia, A. Aspect, and P. Bouyer, New J. Phys., 2006, 8(8): 165ADSCrossRefGoogle Scholar
  94. 94.
    D. Pines and P. Nozières, The Theory of Quantum Liquids: Normal Fermi Liquids, New York: W. A. Benjamin, 1966, see Eq. (2.69)Google Scholar
  95. 95.
    E. Timmermans and R. Côté, Phys. Rev. Lett., 1998, 80(16): 3419ADSCrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Alexander Yu. Cherny
    • 1
  • Jean-Sébastien Caux
    • 2
  • Joachim Brand
    • 3
  1. 1.Bogoliubov Laboratory of Theoretical PhysicsJoint Institute for Nuclear ResearchDubna, Moscow regionRussia
  2. 2.Institute for Theoretical Physics, Science Park 904University of AmsterdamAmsterdamThe Netherlands
  3. 3.Centre for Theoretical Chemistry and Physics and New Zealand Institute for Advanced StudyMassey UniversityNorth Shore, AucklandNew Zealand

Personalised recommendations