Advertisement

Frontiers of Physics

, Volume 6, Issue 4, pp 357–369 | Cite as

Electrodynamics of Abrikosov vortices: the field theoretical formulation

  • Aron J. Beekman
  • Jan Zaanen
Research Article

Abstract

Electrodynamic phenomena related to vortices in superconductors have been studied since their prediction by Abrikosov, and seem to hold no fundamental mysteries. However, most of the effects are treated separately, with no guiding principles.We demonstrate that the relativistic vortex worldsheet in spacetime is the object that naturally conveys all electric and magnetic information, for which we obtain simple and concise equations. Breaking Lorentz invariance leads to down-to-earth Abrikosov vortices, and special limits of these equations include for instance dynamic Meissner screening and the AC Josephson relation. On a deeper level, we explore the electrodynamics of two-form sources in the absence of electric monopoles, in which the electromagnetic field strength itself acquires the characteristics of a gauge field. This novel framework leaves room for unexpected surprises.

Keywords

Abrikosov vortex electromagnetism Maxwell equations differential geometry multivalued fields 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. A. Abrikosov, Soviet J. Exp. & Theor. Phys., 1957, 5: 1174Google Scholar
  2. 2.
    H. Rogalla and P. H. Kes (Eds.), 100 Years of Superconductivity, New York: CRC Press, 2011Google Scholar
  3. 3.
    D. R. Nelson, Phys. Rev. Lett., 1988, 60(19): 1973CrossRefADSMathSciNetGoogle Scholar
  4. 4.
    B. Rosenstein and D. P. Li, Rev. Mod. Phys., 2010, 82(1): 109CrossRefMATHADSMathSciNetGoogle Scholar
  5. 5.
    G. Blatter, M. V. Feigel’man, V. B. Geshkenbein, A. I. Larkin, and V. M. Vinokur, Rev. Mod. Phys., 1994, 66(4): 1125CrossRefADSGoogle Scholar
  6. 6.
    L. N. Bulaevskii and E. M. Chudnovsky, Phys. Rev. Lett., 2006, 97(19): 197002CrossRefADSGoogle Scholar
  7. 7.
    L. N. Bulaevskii and A. E. Koshelev, Phys. Rev. Lett., 2006, 97(26): 267001CrossRefADSGoogle Scholar
  8. 8.
    L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media, No. 8 in Course of Theoretical Physics, Oxford: Pergamon, 1960Google Scholar
  9. 9.
    A. J. Beekman and J. Zaanen, Type-II Bose-Mott insulators (in preparation).Google Scholar
  10. 10.
    M. Henneaux and C. Teitelboim, Quantization of Gauge Systems, Princeton, NJ: Princeton University Press, 1992MATHGoogle Scholar
  11. 11.
    J. Polchinski, String Theory, Vol. I+II, Cambridge: Cambridge University Press, 1998CrossRefGoogle Scholar
  12. 12.
    H. B. Nielsen and P. Olesen, Nucl. Phys. B, 1973, 61: 45CrossRefADSGoogle Scholar
  13. 13.
    J. Schwinger, Particles, Sources and Fields, Reading, MA: Addison-Wesley, 1970Google Scholar
  14. 14.
    H. Kleinert, Gauge Fields in Condensed Matter, Vol. I, Superflow and Vortex Lines, Singapore: World Scientific, 1989MATHGoogle Scholar
  15. 15.
    M. Tinkham, Introduction to Superconductivity, 2nd Ed., New York: McGraw-Hill, 1996Google Scholar
  16. 16.
    A. J. Beekman, D. Sadri, and J. Zaanen, New J. Phys., 2011, 13: 033004CrossRefADSGoogle Scholar
  17. 17.
    B. D. Josephson, Phys. Lett., 1965, 16(3): 242CrossRefADSGoogle Scholar
  18. 18.
    S. Savel’ev, V. A. Yampol’skii, A. L. Rakhmanov, and F. Nori, Rep. Prog. Phys., 2010, 73(2): 026501CrossRefADSGoogle Scholar
  19. 19.
    R. G. Mints and I. B. Snapiro, Phys. Rev. B, 1995, 51(5): 3054CrossRefADSGoogle Scholar
  20. 20.
    K. F. Warnick and P. Russer, Turkish J. Electr. Eng. & Comp. Sci., 2006, 14(1): 153Google Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Instituut-Lorentz for Theoretical PhysicsUniversiteit LeidenLeidenThe Netherlands

Personalised recommendations