Frontiers of Physics

, Volume 7, Issue 2, pp 175–192 | Cite as

Studies on the electronic structures of three-dimensional topological insulators by angle resolved photoemission spectroscopy

Review Article

Abstract

Three-dimensional (3D) topological insulators represent a new state of quantum matter with a bulk gap and odd number of relativistic Dirac fermions on the surface. The unusual surface states of topological insulators rise from the nontrivial topology of their electronic structures as a result of strong spin-orbital coupling. In this review, we will briefly introduce the concept of topological insulators and the experimental method that can directly probe their unique electronic structure: angle resolved photoemission spectroscopy (ARPES). A few examples are then presented to demonstrate the unique band structures of different families of topological insulators and the unusual properties of the topological surface states. Finally, we will briefly discuss the future development of topological quantum materials.

Keywords

topological insulator (TI) photoemission ARPES 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Anderson, Basic Notions of Condensed Matter Physics, Reading: Addison-Wesley, 1997Google Scholar
  2. 2.
    K. v. Klitzing, G. Dorda, and M. Pepper, Phys. Rev. Lett., 1980, 45: 494ADSCrossRefGoogle Scholar
  3. 3.
    D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, Phys. Rev. Lett., 1982, 49: 405ADSCrossRefGoogle Scholar
  4. 4.
    J. Bellissard, A. van Elst, and H. Schulz-Baldes, J. Math. Phys., 1994, 35: 5373MathSciNetADSMATHCrossRefGoogle Scholar
  5. 5.
    X. L. Qi and S. C. Zhang, Phys. Today, 2010, 63: 33ADSCrossRefGoogle Scholar
  6. 6.
    L. Fu and C. L. Kane, Phys. Rev. B, 2007, 76: 045302ADSCrossRefGoogle Scholar
  7. 7.
    X. L. Qi, T. L. Hughes, and S. C. Zhang, Phys. Rev. B, 2008, 78: 195424ADSCrossRefGoogle Scholar
  8. 8.
    C. L. Kane and E. J. Mele, Phys. Rev. Lett., 2005, 95: 226801ADSCrossRefGoogle Scholar
  9. 9.
    C. L. Kane and E. J. Mele, Phys. Rev. Lett., 2005, 95: 146802ADSCrossRefGoogle Scholar
  10. 10.
    B. A. Bernevig, T. L. Hughes, and S. C. Zhang, Science, 2006, 314: 1757ADSCrossRefGoogle Scholar
  11. 11.
    M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L. W. Molenkamp, X. L. Qi, and S. C. Zhang, Science, 2007, 318: 766ADSCrossRefGoogle Scholar
  12. 12.
    D. Hsieh, D. Qian, L. Wray, Y. Xia, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Nature, 2008, 452: 970ADSCrossRefGoogle Scholar
  13. 13.
    H. Zhang, C. Liu, X. Qi, X. Dai, Z. Fang, and S. Zhang, Nat. Phys., 2009, 5: 438CrossRefGoogle Scholar
  14. 14.
    Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y. Hor, R. Cava, and M. Z. Hasan, Nat. Phys., 2009, 5: 398CrossRefGoogle Scholar
  15. 15.
    D. Hsieh, Y. Xia, D. Qian, L. Wray, J. H. Dil, F. Meier, J. Osterwalder, L. Patthey, J. G. Checkelsky, N. P. Ong, A. V. Fedorov, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Nature, 2009, 460: 1101ADSCrossRefGoogle Scholar
  16. 16.
    Y. L. Chen, J. G. Analytis, J. H. Chu, Z. K. Liu, S. K. Mo, X. L. Qi, H. J. Zhang, D. H. Lu, X. Dai, Z. Fang, S. C. Zhang, I. R. Fisher, Z. Hussain, and Z. X. Shen, Science, 2009, 325: 178ADSCrossRefGoogle Scholar
  17. 17.
    P. Roushan, J. Seo, C. V. Parker, Y. S. Hor, D. Hsieh, D. Qian, A. Richardella, M. Z. Hasan, R. J. Cava, and A. Yazdani, Nature, 2009, 460: 1106ADSCrossRefGoogle Scholar
  18. 18.
    L. Fu, C. L. Kane, and E. J. Mele, Phys. Rev. Lett., 2007, 98: 106803ADSCrossRefGoogle Scholar
  19. 19.
    L. Fu, Phys. Rev. Lett., 2009, 103: 266801ADSCrossRefGoogle Scholar
  20. 20.
    A. R. Akhmerov, J. Nilsson, and C. W. J. Beenakker, Phys. Rev. Lett., 2009, 102: 216404ADSCrossRefGoogle Scholar
  21. 21.
    J. E. Moore and L. Balents, Phys. Rev. B, 2007, 75: 121306ADSCrossRefGoogle Scholar
  22. 22.
    R. Roy, Phys. Rev. B, 2009, 79: 195321ADSCrossRefGoogle Scholar
  23. 23.
    X. L. Qi, T. L. Hughes, S. Raghu, and S. C. Zhang, Phys. Rev. Lett., 2009, 102: 187001ADSCrossRefGoogle Scholar
  24. 24.
    L. Fu and E. Berg, Phys. Rev. Lett., 2010, 105: 097001ADSCrossRefGoogle Scholar
  25. 25.
    Y. L. Chen, J. H. Chu, J. G. Analytis, Z. K. Liu, K. Igarashi, H. H. Kuo, X. L. Qi, S. K. Mo, R. G. Moore, D. H. Lu, M. Hashimoto, T. Sasagawa, S. C. Zhang, I. R. Fisher, Z. Hussain, and Z. X. Shen, Science, 2010, 329: 659ADSCrossRefGoogle Scholar
  26. 26.
    Y. Hor, J. Checkelsky, D. Qu, N. Ong, and R. Cava, J. Phys. Chem. Solids, 2011, 72: 572ADSCrossRefGoogle Scholar
  27. 27.
    B. Yan, C. X. Liu, H. J. Zhang, C. Y. Yam, X. L. Qi, T. Frauenheim, and S. C. Zhang, Europhys. Lett., 2010, 90: 37002ADSCrossRefGoogle Scholar
  28. 28.
    Y. L. Chen, Z. K. Liu, J. G. Analytis, J. H. Chu, H. J. Zhang, B. H. Yan, S. K. Mo, R. G. Moore, D. H. Lu, I. R. Fisher, S. C. Zhang, Z. Hussain, and Z. X. Shen, Phys. Rev. Lett., 2010, 105: 266401ADSCrossRefGoogle Scholar
  29. 29.
    H. Min, J. E. Hill, N. A. Sinitsyn, B. R. Sahu, L. Kleinman, and A. H. MacDonald, Phys. Rev. B, 2006, 74: 165310ADSCrossRefGoogle Scholar
  30. 30.
    Y. Yao, F. Ye, X. L. Qi, S. C. Zhang, and Z. Fang, Phys. Rev. B, 2007, 75: 041401ADSCrossRefGoogle Scholar
  31. 31.
    H. Lin, R. S. Markiewicz, L. A. Wray, L. Fu, M. Z. Hasan, and A. Bansil, Phys. Rev. Lett., 2010, 105: 036404ADSCrossRefGoogle Scholar
  32. 32.
    S. Chadov, X. Qi, J. Kübler, G. H. Fecher, C. Felser, and S. C. Zhang, Nat. Mater., 2010, 9: 541ADSCrossRefGoogle Scholar
  33. 33.
    H. Lin, L. Wray, Y. Xia, S. Xu, S. Jia, R. Cava, A. Bansil, and M. Hasan, Nat. Mater., 2010, 9: 546ADSCrossRefGoogle Scholar
  34. 34.
    M. P. Seah and W. A. Dench, Surface and Interface Analysis, 1979, 1: 2, http://dx.doi.org/10.1002/sia.740010103 CrossRefGoogle Scholar
  35. 35.
    A. Becquerel, CR (East Lansing, Mich.), 1839, 9: 561Google Scholar
  36. 36.
    H. Hertz, Annalen der Physik, 1887, 267: 421ADSCrossRefGoogle Scholar
  37. 37.
    A. Einstein, Ann. Phys., 1906, 20: 199MATHCrossRefGoogle Scholar
  38. 38.
    B. Feuerbacher, B. Fitton, and R. Willis, Photoemission and The Electronic Properties of Surfaces, New York (London): Wiley, 1978Google Scholar
  39. 39.
    A. Shitade, H. Katsura, J. Kunes, X. L. Qi, S. C. Zhang, and N. Nagaosa, Phys. Rev. Lett., 2009, 102: 256403ADSCrossRefGoogle Scholar
  40. 40.
    X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, Phys. Rev. B, 2011, 83: 205101ADSCrossRefGoogle Scholar
  41. 41.
    W. Röentgen, Sitzungsberichte der Physikalisch-Medizischen Gesellschaft in Wurzburg, Phys. Medi. Society, 1895, S. 132–141, Band 137Google Scholar
  42. 42.
    A. J. Nicholson, Appl. Opt., 1970, 9: 1155ADSCrossRefGoogle Scholar
  43. 43.
    F. Elder, A. Gurewitsch, R. Langmuir, and H. Pollock, Phys. Rev., 1947, 71: 829ADSCrossRefGoogle Scholar
  44. 44.
    T. H. Maiman, Nature, 1960, 187: 493ADSCrossRefGoogle Scholar
  45. 45.
    A. Lienard, L’Eclairage Elec., 1898, 16: 5Google Scholar
  46. 46.
    D. H. Bilderback, P. Elleaume, and E. Weckert, J. Phys. B, 2005, 38: S773ADSCrossRefGoogle Scholar
  47. 47.
    E. Fermi, Zeits. f. Physik, 1934, 88: 172CrossRefGoogle Scholar
  48. 48.
    D. Hsieh, Y. Xia, L. Wray, D. Qian, A. Pal, J. H. Dil, J. Osterwalder, F. Meier, G. Bihlmayer, C. L. Kane, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Science, 2009, 323: 919ADSCrossRefGoogle Scholar
  49. 49.
    D. Hsieh, Y. Xia, D. Qian, L. Wray, F. Meier, J. H. Dil, J. Osterwalder, L. Patthey, A. V. Fedorov, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Phys. Rev. Lett., 2009, 103: 146401ADSCrossRefGoogle Scholar
  50. 50.
    Z. Alpichshev, J. Analytis, J. Chu, I. Fisher, Y. Chen, Z. Shen, A. Fang, and A. Kapitulnik, Phys. Rev. Lett., 2010, 104: 16401ADSCrossRefGoogle Scholar
  51. 51.
    S. Souma, K. Kosaka, T. Sato, M. Komatsu, A. Takayama, T. Takahashi, M. Kriener, K. Segawa, and Y. Ando, Phys. Rev. Lett., 2011, 106: 216803ADSCrossRefGoogle Scholar
  52. 52.
    S.-Y. Xu, L. A. Wray, Y. Xia, F. von Rohr, Y. S. Hor, J. H. Dil, F. Meier, B. Slomski, J. Osterwalder, M. Neupane, H. Lin, A. Bansil, A. Fedorov, R. J. Cava, and M. Z. Hasan, arXiv: 1101.3985v1, 2011Google Scholar
  53. 53.
    Y. Zhang, K. He, C. Z. Chang, C. L. Song, L. L. Wang, X. Chen, J. F. Jia, Z. Fang, X. Dai, W. Y. Shan, S.-Q. Shen, Q. Niu, X.-L. Qi, S.-C. Zhang, X.-C. Ma, and Q.-K. Xue, Nat. Phys., 2010, 6: 584CrossRefGoogle Scholar
  54. 54.
    C. X. Liu, H. Zhang, B. Yan, X. L. Qi, T. Frauenheim, X. Dai, Z. Fang, and S. C. Zhang, Phys. Rev. B, 2010, 81: 041307ADSCrossRefGoogle Scholar
  55. 55.
    X. L. Qi, R. Li, J. Zang, and S. C. Zhang, Science, 2009, 323: 1184MathSciNetADSMATHCrossRefGoogle Scholar
  56. 56.
    J. Zang and N. Nagaosa, Phys. Rev. B, 2010, 81: 245125ADSCrossRefGoogle Scholar
  57. 57.
    F. Wilczek, Nature, 2009, 458: 129ADSCrossRefGoogle Scholar
  58. 58.
    L. A. Wray, S.Y. Xu, Y. Xia, D. Hsieh, A. V. Fedorov, Y. S. Hor, R. J. Cava, A. Bansil, H. Lin, and M. Z. Hasan, Nat. Phys., 2011, 7: 32CrossRefGoogle Scholar
  59. 59.
    G. Wang, X. G. Zhu, Y. Y. Sun, Y. Y. Li, T. Zhang, J. Wen, X. Chen, K. He, L. L. Wang, X. C. Ma, J. F. Jia, S. B. Zhang, and Q. K. Xue, Adv. Mater., 2011, 23: 2929, http://dx.doi.org/10.1002/adma.201100678 CrossRefGoogle Scholar
  60. 60.
    J. G. Analytis, J. H. Chu, Y. Chen, F. Corredor, R. D. Mc-Donald, Z. X. Shen, and I. R. Fisher, Phys. Rev. B, 2010, 81: 205407ADSCrossRefGoogle Scholar
  61. 61.
    R. A. Hein and E. M. Swiggard, Phys. Rev. Lett., 1970, 24: 53ADSCrossRefGoogle Scholar
  62. 62.
    C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das Sarma, Rev. Mod. Phys., 2008, 80: 1083ADSMATHCrossRefGoogle Scholar
  63. 63.
    D. P. Spitzer and J. A. Sykes, J. Appl. Phys., 1966, 37: 1563ADSCrossRefGoogle Scholar
  64. 64.
    K. Chrissafis, E. S. Vinga, K. M. Paraskevopoulos, and E. K. Polychroniadis, Physica Status Solidi (a), 2003, 196: 515ADSCrossRefGoogle Scholar
  65. 65.
    K. Kurosaki, A. Kosuga, and S. Yamanaka, J. Alloys Comp., 2003, 351: 279CrossRefGoogle Scholar
  66. 66.
    K. Kurosaki, H. Uneda, H. Muta, and S. Yamanaka, J. Alloys Comp., 2004, 376: 43CrossRefGoogle Scholar
  67. 67.
    K. F. Hsu, S. Loo, F. Guo, W. Chen, J. S. Dyck, C. Uher, T. Hogan, E. K. Polychroniadis, and M. G. Kanatzidis, Science, 2004, 303: 818ADSCrossRefGoogle Scholar
  68. 68.
    K. Hoang and S. D. Mahanti, Phys. Rev. B, 2008, 77: 205107ADSCrossRefGoogle Scholar
  69. 69.
    J. Analytis, R. McDonald, S. Riggs, J. Chu, G. Boebinger, and I. Fisher, Nat. Phys., 2010, 6: 960CrossRefGoogle Scholar
  70. 70.
    Z. Ren, A. A. Taskin, S. Sasaki, K. Segawa, and Y. Ando, Phys. Rev. B, 2010, 82: 241306ADSCrossRefGoogle Scholar
  71. 71.
    C. Brüne, C. X. Liu, E.G. Novik, E.M. Hankiewicz, H. Buhmann, Y. L. Chen, X. L. Qi, Z. X. Shen, S. C. Zhang, and L. W. Molenkamp, Phys. Rev. Lett., 2011, 106: 126803ADSCrossRefGoogle Scholar
  72. 72.
    R. Yu, W. Zhang, H. J. Zhang, S. C. Zhang, X. Dai, and Z. Fang, Science, 2010, 329: 61ADSCrossRefGoogle Scholar
  73. 73.
    F. Wilczek, Nat. Phys., 2009, 5: 614CrossRefGoogle Scholar
  74. 74.
    X. L. Qi, T. L. Hughes, and S. C. Zhang, Phys. Rev. B, 2010, 81: 134508ADSCrossRefGoogle Scholar
  75. 75.
    A. P. Schnyder, S. Ryu, A. Furusaki, and A. W. W. Ludwig, Phys. Rev. B, 2008, 78: 195125ADSCrossRefGoogle Scholar
  76. 76.
    A. Nishide, A. A. Taskin, Y. Takeichi, T. Okuda, A. Kakizaki, T. Hirahara, K. Nakatsuji, F. Komori, Y. Ando, and I. Matsuda, Phys. Rev. B, 2010, 81: 041309 (R)ADSCrossRefGoogle Scholar
  77. 77.
    Y. Y. Li, G. Wang, X. G. Zhu, M. H. Liu, C. Ye, X. Chen, Y. Y. Wang, K. He, L. L. Wang, X. C. Ma, H. J. Zhang, X. Dai, Z. Fang, X. C. Xie, Y. Liu, X. L. Qi, J. F. Jia, S. C. Zhang, and Q. K. Xue, Adv. Mater., 2010, 22: 4002CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of Oxford, Clarendon LaboratoryOxfordUK
  2. 2.Stanford Institute for Materials and Energy SciencesSLAC National Accelerator LaboratoryMenlo ParkUSA
  3. 3.Geballe Laboratory for Advanced Materials, Departments of Physics and Applied PhysicsStanford UniversityStanfordUSA

Personalised recommendations