Advertisement

Frontiers of Physics

, Volume 7, Issue 3, pp 311–314 | Cite as

Doppler-free spectroscopy of rubidium atoms driven by a control laser

  • Zheng Tan (谭政)
  • Xiu-chao Zhao (赵修超)
  • Yong Cheng (程雍)
  • Xian-ping Sun (孙献平)
  • Jun Luo (罗军)
  • Xin Zhou (周欣)
  • Jin Wang (王谨)
  • Ming-sheng Zhan (詹明生)
Research Article
  • 130 Downloads

Abstract

A scheme of Doppler-free spectroscopy is experimentally demonstrated with a co-propagating control laser locking to an atomic hyperfine transition, and the differential transmission of the probe and the reference laser is detected. Crossover resonances are eliminated by selecting the class of atoms with zero velocity in the direction of beam propagation. In addition, the sub-Doppler spectrum experiences optical gain compared to the conventional saturated-absorption spectrum as a result of optical pumping.

Keywords

Doppler-free spectroscopy crossover resonances optical pumping 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Demtröder, Laser Spectroscopy, Berlin: Springer, 1998Google Scholar
  2. 2.
    K. B. MacAdam, A. Steinbach, and C. E. Wieman, Am. J. Phys., 1992, 60(12): 1098ADSCrossRefGoogle Scholar
  3. 3.
    D. A. Smith and I. G. Hughes, Am. J. Phys., 2004, 72(5): 631ADSCrossRefGoogle Scholar
  4. 4.
    O. Schmidt, K. M. Knaak, R. Wynands, and D. Meschede, Appl. Phys. B, 1994, 59(2): 167ADSCrossRefGoogle Scholar
  5. 5.
    C. Wieman and T. W. Hänsch, Phys. Rev. Lett., 1976, 36(20): 1170ADSCrossRefGoogle Scholar
  6. 6.
    M. L. Harris, C. S. Adams, S. L. Cornish, I. C. McLeod, E. Tarleton, and I. G. Hughes, Phys. Rev. A, 2006, 73(6): 062509ADSCrossRefGoogle Scholar
  7. 7.
    H. D. Do, G. Moon, and H. R. Noh, Phys. Rev. A, 2008, 77(3): 032513ADSCrossRefGoogle Scholar
  8. 8.
    C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, and I. G. Hughes, J. Phys. B, 2002, 35(24): 5141ADSCrossRefGoogle Scholar
  9. 9.
    Y. Yoshikawa, T. Umeki, T. Mukae, Y. Torii, and T. Kuga, Appl. Opt., 2003, 42(33): 6645ADSCrossRefGoogle Scholar
  10. 10.
    A. Onae, K. Okumura, J. Yoda, and K. Nakagawa, Conference on Precision Electromagnetic Measurements, in CPEM Digest, 1996, 17–20: 317Google Scholar
  11. 11.
    A. Banerjee and V. Natarajan, Opt. Lett., 2003, 28(20): 1912ADSCrossRefGoogle Scholar
  12. 12.
    S. Briaudeau, D. Bloch, and M. Ducloy, Phys. Rev. A, 1999, 59(5): 3723ADSCrossRefGoogle Scholar
  13. 13.
    A. Sargsyan, D. Sarkisyan, A. Papoyan, Y. Pashayan-Leroy, P. Moroshkin, A. Weis, A. Khanbekyan, E. Mariotti, and L. Moi, Laser Phys., 2008, 18(6): 749ADSCrossRefGoogle Scholar
  14. 14.
    Y. F. Zhu and T. N. Wasserlauf, Phys. Rev. A, 1999, 54(4): 3653ADSCrossRefGoogle Scholar
  15. 15.
    U. D. Rapol, A. Wasan, and V. Natarajan, Phys. Rev. A, 2003, 67(5): 053802ADSCrossRefGoogle Scholar
  16. 16.
    G. C. Bjorklund and M. Levenson, Phys. Rev. A, 1981, 24(1): 166ADSCrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Zheng Tan (谭政)
    • 1
    • 2
    • 3
  • Xiu-chao Zhao (赵修超)
    • 1
    • 2
    • 3
  • Yong Cheng (程雍)
    • 1
    • 2
    • 3
  • Xian-ping Sun (孙献平)
    • 1
    • 2
  • Jun Luo (罗军)
    • 1
    • 2
  • Xin Zhou (周欣)
    • 1
    • 2
  • Jin Wang (王谨)
    • 1
    • 2
  • Ming-sheng Zhan (詹明生)
    • 1
    • 2
  1. 1.State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and MathematicsChinese Academy of Sciences; Wuhan National Laboratory for OptoelectronicsWuhanChina
  2. 2.Center for Cold Atom PhysicsChinese Academy of SciencesWuhanChina
  3. 3.Chinese Academy of SciencesGraduate UniversityBeijingChina

Personalised recommendations