Frontiers of Physics in China

, Volume 5, Issue 4, pp 387–392 | Cite as

Corrugated single layer templates for molecules: From h-BN nanomesh to graphene based quantum dot arrays

  • Hai-feng Ma (马海峰)
  • Mario Thomann
  • Jeanette Schmidlin
  • Silvan Roth
  • Martin Morscher
  • Thomas Greber
Research Article

Abstract

Functional nano-templates enable self-assembly of otherwise impossible arrangements of molecules. A particular class of such templates is that of sp2 hybridized single layers of hexagonal boron nitride or carbon (graphene) on metal supports. If the substrate and the single layer have a lattice mismatch, superstructures are formed. On substrates like rhodium or ruthenium these superstructures have unit cells with ∼3-nm lattice constant. They are corrugated and contain sub-units, which behave like traps for molecules or quantum dots, which are small enough to become operational at room temperature. For graphene on Rh(111) we emphasize a new structural element of small extra hills within the corrugation landscape. For the case of molecules like water it is shown that new phases assemble on such templates, and that they can be used as “nano-laboratories” where many individual processes are studied in parallel. Furthermore, it is shown that the h-BN/Rh(111) nanomesh displays a strong scanning tunneling microscopy-induced luminescence contrast within the 3 nm unit cell which is a way to address trapped molecules and/or quantum dots.

Keywords

hexagonal boron nitride graphene nano-template quantum dot nano-ice nanomesh electroluminescence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. K. Geim and K. S. Novoselov, Nature Mater., 2007, 6: 183CrossRefADSGoogle Scholar
  2. 2.
    C. Oshima and A. Nagashima, J. Phys.: Condens. Matter, 1997, 9: 1CrossRefADSGoogle Scholar
  3. 3.
    T. Greber, Handbook of Nanophysics: Functional Nanomaterials, London: Taylor & Francis Books, 2010Google Scholar
  4. 4.
    H. Dil, J. Lobo-Checa, R. Laskowski, P. Blaha, S. Berner, J. Osterwalder, and T. Greber, Science, 2008, 319: 1824CrossRefADSGoogle Scholar
  5. 5.
    T. Brugger, S. Günther, B. Wang, J. H. Dil, M. L. Bocquet, J. Osterwalder, J. Wintterlin, and T. Greber, Phys. Rev. B, 2009, 79: 045407CrossRefADSGoogle Scholar
  6. 6.
    T. Greber, e-J. Surf. Sci. Nanotech., 2010, 8: 62CrossRefGoogle Scholar
  7. 7.
    M. Morscher, M. Corso, T. Greber, and J. Osterwalder, Sur. Sci., 2006, 600: 3280CrossRefADSGoogle Scholar
  8. 8.
    T. Greber, M. Corso, and J. Osterwalder, Sur. Sci., 2009, 603: 1373CrossRefADSGoogle Scholar
  9. 9.
    A. T. N’Diaye, S. Bleikamp, P. J. Feibelman, and T. Michely, Phys. Rev. Lett., 2006, 97: 215501CrossRefADSGoogle Scholar
  10. 10.
    M. Corso, W. Auwärter, M. Muntwiler, A. Tamai, T. Greber, and J. Osterwalder, Science, 2004, 303: 217CrossRefADSGoogle Scholar
  11. 11.
    S. Berner, M. Corso, R. Widmer, O. Groening, R. Laskowski, P. Blaha, K. Schwarz, A. Goriachko, H. Over, S. Gsell, et al., Angew. Chem. Int. Ed., 2007, 46: 5115CrossRefGoogle Scholar
  12. 12.
    H. G. Zhang, H. Hu, Y. Pan, J. H. Mao, M. Gao, H. M. Guo, S. X. Du, T. Greber, and H. J. Gao, J. Phys.: Condens. Matter, 2010, 22: 302001CrossRefGoogle Scholar
  13. 13.
    A. B. Preobrajenski, M. L. Ng, A. S. Vinogradov, and N. Mårtensson, Phys. Rev. B, 2008, 78: 073401CrossRefADSGoogle Scholar
  14. 14.
    W. Auwärter, T. J. Kreutz, T. Greber, and J. Osterwalder, Sur. Sci., 1999, 429: 229CrossRefADSGoogle Scholar
  15. 15.
    G. B. Grad, P. Blaha, K. Schwarz, W. Aüwarter, and T. Greber, Phys. Rev. B, 2003, 68: 085404CrossRefADSGoogle Scholar
  16. 16.
    I. Horcas, R. Fernández, J. M. Gómez-Rodríguez, J. Colchero, J. Gómez-Herrero, and A. M. Baro, Rev. Sci. Instrum., 2007, 78: 013705CrossRefADSGoogle Scholar
  17. 17.
    F. Müller, H. Sachdev, S. Hüfner, A. J. Pollard, E. W. Perkins, J. C. Russell, P. H. Beton, S. Gsell, M. Fischer, M. Schreck, et al., Small, 2009, 5: 2291CrossRefGoogle Scholar
  18. 18.
    M. Iannuzzi, Private CommunicationGoogle Scholar
  19. 19.
    H. F. Ma, T. Brugger, S. Berner, Y. Ding, M. Iannuzzi, J. Hutter, J. Osterwalder, and T. Greber, ChemPhysChem, 2010, 11: 399CrossRefGoogle Scholar
  20. 20.
    A. J. Pollard, E. W. Perkins, N. A. Smith, A. Saywell, G. Goretzki, A. G. Phillips, S. P. Argent, H. Sachdev, F. Müller, S. Hüfner, et al., Angew. Chem. Int. Edit., 2010, 49: 1794CrossRefGoogle Scholar
  21. 21.
    J. H. Mao, H. G. Zhang, Y. H. Jiang, Y. Pan, M. Gao, W. D. Xiao, and H. J. Gao, J. Am. Chem. Soc., 2009, 131: 14136CrossRefGoogle Scholar
  22. 22.
    J. Zhang, V. Sessi, C. H. Michaelis, I. Brihuega, J. Honolka, K. Kern, R. Skomski, X. Chen, G. Rojas, and A. Enders, Phys. Rev. B, 2008, 78: 165430CrossRefADSGoogle Scholar
  23. 23.
    Y. Pan, M. Gao, L. Huang, F. Liu, and H. J. Gao, Appl. Phys. Lett., 2009, 95: 093106CrossRefADSGoogle Scholar
  24. 24.
    A. Goriachko, Y. B. He, M. Knapp, H. Over, M. Corso, T. Brugger, S. Berner, J. Osterwalder, and T. Greber, Langmuir, 2007, 23: 2928CrossRefGoogle Scholar
  25. 25.
    R. Laskowski, P. Blaha, T. Gallauner, and K. Schwarz, Phys. Rev. Lett., 2007, 98: 106802CrossRefADSGoogle Scholar
  26. 26.
    J. K. Gimzewski, B. Reihl, J. H. Coombs, and R. R. Schlittler, Z. Phys. B: Condens. Matter, 1988, 72: 497CrossRefADSGoogle Scholar
  27. 27.
    S. W. Wu, N. Ogawa, and W. Ho, Science, 2006, 312: 1362CrossRefADSGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Hai-feng Ma (马海峰)
    • 1
  • Mario Thomann
    • 1
  • Jeanette Schmidlin
    • 1
  • Silvan Roth
    • 1
  • Martin Morscher
    • 1
  • Thomas Greber
    • 1
  1. 1.Physik-InstitutUniversität ZürichZürichSwitzerland

Personalised recommendations